期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
结合稠密特征映射的CT图像肿瘤分割模型 被引量:2
1
作者 姜迪 刘慧 +1 位作者 李钰 张彩明 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2021年第8期1273-1286,共14页
与常规分割对象不同,医学图像中肿瘤组织像素占比小且解剖结构相近于人体狭小组织,不同肿瘤之间差异度不明显,这导致常规分割方法对肿瘤的分割效果低于期望值.因此,为了增强肿瘤特征传递的有效性,提出一种结合高低维稠密特征映射的肿瘤... 与常规分割对象不同,医学图像中肿瘤组织像素占比小且解剖结构相近于人体狭小组织,不同肿瘤之间差异度不明显,这导致常规分割方法对肿瘤的分割效果低于期望值.因此,为了增强肿瘤特征传递的有效性,提出一种结合高低维稠密特征映射的肿瘤分割模型.首先,模型采用特征3维映射技术改进网络参数,将CT图像聚合成3维序列结构进行硬阈值3维变换,从而建立特征连接并减少不可逆初始特征丢失现象.然后,构建融合特征映射的稠密卷积网络,使用SELU代替ReLU激活函数,激活网络并提升网络优化度,引入负数部分参数避免“死特征”出现,并在每个稠密块后增加一层最大池化层抽象图像特征,减少时间、空间资本消耗.最后,采用特征复现方法进行特征重建,融合通道特征、空间特征提升特征表达能力.实验采用山东省千佛山医院提供的CT图像数据集,在TensorFlow环境下将模型与U-Net等分割模型进行对比,并对模型进行了消融实验.实验结果表明,该模型有效地提升了肿瘤分割的准确度,与已有经典模型相比,在均像素精度、均交并比等性能指标上均取得了更好的效果. 展开更多
关键词 3维图序列 稠密特征 特征映射 深度学习
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部