期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
结合稠密特征映射的CT图像肿瘤分割模型
被引量:
2
1
作者
姜迪
刘慧
+1 位作者
李钰
张彩明
《计算机辅助设计与图形学学报》
EI
CSCD
北大核心
2021年第8期1273-1286,共14页
与常规分割对象不同,医学图像中肿瘤组织像素占比小且解剖结构相近于人体狭小组织,不同肿瘤之间差异度不明显,这导致常规分割方法对肿瘤的分割效果低于期望值.因此,为了增强肿瘤特征传递的有效性,提出一种结合高低维稠密特征映射的肿瘤...
与常规分割对象不同,医学图像中肿瘤组织像素占比小且解剖结构相近于人体狭小组织,不同肿瘤之间差异度不明显,这导致常规分割方法对肿瘤的分割效果低于期望值.因此,为了增强肿瘤特征传递的有效性,提出一种结合高低维稠密特征映射的肿瘤分割模型.首先,模型采用特征3维映射技术改进网络参数,将CT图像聚合成3维序列结构进行硬阈值3维变换,从而建立特征连接并减少不可逆初始特征丢失现象.然后,构建融合特征映射的稠密卷积网络,使用SELU代替ReLU激活函数,激活网络并提升网络优化度,引入负数部分参数避免“死特征”出现,并在每个稠密块后增加一层最大池化层抽象图像特征,减少时间、空间资本消耗.最后,采用特征复现方法进行特征重建,融合通道特征、空间特征提升特征表达能力.实验采用山东省千佛山医院提供的CT图像数据集,在TensorFlow环境下将模型与U-Net等分割模型进行对比,并对模型进行了消融实验.实验结果表明,该模型有效地提升了肿瘤分割的准确度,与已有经典模型相比,在均像素精度、均交并比等性能指标上均取得了更好的效果.
展开更多
关键词
3
维图
像
序列
稠密特征
特征映射
深度学习
下载PDF
职称材料
题名
结合稠密特征映射的CT图像肿瘤分割模型
被引量:
2
1
作者
姜迪
刘慧
李钰
张彩明
机构
山东财经大学计算机科学与技术学院
山东省数字媒体技术重点实验室
山东大学软件学院
出处
《计算机辅助设计与图形学学报》
EI
CSCD
北大核心
2021年第8期1273-1286,共14页
基金
国家自然科学基金重点项目浙江联合基金(U1609218)
国家自然科学基金(62072274).
文摘
与常规分割对象不同,医学图像中肿瘤组织像素占比小且解剖结构相近于人体狭小组织,不同肿瘤之间差异度不明显,这导致常规分割方法对肿瘤的分割效果低于期望值.因此,为了增强肿瘤特征传递的有效性,提出一种结合高低维稠密特征映射的肿瘤分割模型.首先,模型采用特征3维映射技术改进网络参数,将CT图像聚合成3维序列结构进行硬阈值3维变换,从而建立特征连接并减少不可逆初始特征丢失现象.然后,构建融合特征映射的稠密卷积网络,使用SELU代替ReLU激活函数,激活网络并提升网络优化度,引入负数部分参数避免“死特征”出现,并在每个稠密块后增加一层最大池化层抽象图像特征,减少时间、空间资本消耗.最后,采用特征复现方法进行特征重建,融合通道特征、空间特征提升特征表达能力.实验采用山东省千佛山医院提供的CT图像数据集,在TensorFlow环境下将模型与U-Net等分割模型进行对比,并对模型进行了消融实验.实验结果表明,该模型有效地提升了肿瘤分割的准确度,与已有经典模型相比,在均像素精度、均交并比等性能指标上均取得了更好的效果.
关键词
3
维图
像
序列
稠密特征
特征映射
深度学习
Keywords
three-dimentional image sequence
dense feature
feature mapping
deep learning
分类号
TP391.41 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
结合稠密特征映射的CT图像肿瘤分割模型
姜迪
刘慧
李钰
张彩明
《计算机辅助设计与图形学学报》
EI
CSCD
北大核心
2021
2
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部