针对YOLOv3(you only look once version 3)对中小目标检测效果不理想的问题,提出改进算法DX-YOLO(densely ResneXt with YOLOv3)。首先对YOLOv3的特征提取网络Darknet-53进行改进,使用ResneXt残差模块替换原有残差模块,优化了卷积网络...针对YOLOv3(you only look once version 3)对中小目标检测效果不理想的问题,提出改进算法DX-YOLO(densely ResneXt with YOLOv3)。首先对YOLOv3的特征提取网络Darknet-53进行改进,使用ResneXt残差模块替换原有残差模块,优化了卷积网络结构;受DenseNet的启发,在Darknet-53中引入密集连接,实现了特征重用,提高了提取特征的效率;根据数据集的特点,利用K-means算法对数据集进行维度聚类,获得合适的预选框。在行人车辆数据集Udacity上进行实验,结果表明:DX-YOLO算法与YOLOv3相比,平均准确率(mean average precision,mAP)提升了3.42%;特别地,在中等目标和小目标上的平均精度(average precision,AP)分别提升了2.74%和5.98%。展开更多
文摘针对YOLOv3(you only look once version 3)对中小目标检测效果不理想的问题,提出改进算法DX-YOLO(densely ResneXt with YOLOv3)。首先对YOLOv3的特征提取网络Darknet-53进行改进,使用ResneXt残差模块替换原有残差模块,优化了卷积网络结构;受DenseNet的启发,在Darknet-53中引入密集连接,实现了特征重用,提高了提取特征的效率;根据数据集的特点,利用K-means算法对数据集进行维度聚类,获得合适的预选框。在行人车辆数据集Udacity上进行实验,结果表明:DX-YOLO算法与YOLOv3相比,平均准确率(mean average precision,mAP)提升了3.42%;特别地,在中等目标和小目标上的平均精度(average precision,AP)分别提升了2.74%和5.98%。