期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Uniform Convergence of Higher Order Quasi Hermite-Fejer Interpolation
1
作者 王子玉 田继善 《Chinese Science Bulletin》 SCIE EI CAS 1994年第6期441-448,共8页
Let X<sub>n</sub>={x<sub>kn</sub>=cosθ<sub>kn</sub>: θ<sub>kn</sub>=(kπ)/(n+1), 1≤k≤n}be the node system which consists ofroots of U<sub>n</sub> (x... Let X<sub>n</sub>={x<sub>kn</sub>=cosθ<sub>kn</sub>: θ<sub>kn</sub>=(kπ)/(n+1), 1≤k≤n}be the node system which consists ofroots of U<sub>n</sub> (x) =(sin(n+1)θ)/(sinθ)(x=cosθ θ∈[0,π]), the second kind Chebyshevpolynomical. All the symbols below have the same meaning as Ref. [1]if notspecifically defined. We shall consider a kind of new interpolating problem in thisnote. For any non-negative integer q and f∈C[-1, 1], it is well known that thepolynomial Q<sub>nq</sub>(f)∈П<sub>N</sub> (N=2(q+1) (n+1) -1) satisfying the following conditions isuniquely determined:Q<sub>nq</sub>(f, x<sub>kn</sub>) =f(x<sub>kn</sub>), 1≤k≤n; Q<sub>nq</sub>(f,±1)=f(±1),Q<sub>nq</sub><sup>j</sup>(f,x<sub>kn</sub>)=c<sub>jkn</sub>, 1≤k≤n,1≤j≤2q+1,Q<sub>nq</sub><sup>j</sup>(f,1)=d<sub>jn</sub>, Q<sub>nq</sub><sup>j</sup>(f,-1)=g<sub>jn</sub>, 1≤j≤q,where c<sub>jkn</sub>,d<sub>jn</sub>, g<sub>jn</sub>are any given real numbers. Q<sub>nq</sub>(f)is called the higher orderquasi Hermite-Fejer interpolation of f.We 展开更多
关键词 second kind chebyshev nodes higher order QUASI Hermite-Fejer INTERPOLATION uniform convergence approximation order.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部