Strongly ordered B2 compounds exist in many alloy systems. This paper presented an overview of their mechanical properties, which depend strongly on the concentrations of constitutional defects, that is, on the consti...Strongly ordered B2 compounds exist in many alloy systems. This paper presented an overview of their mechanical properties, which depend strongly on the concentrations of constitutional defects, that is, on the constitutional vacancies and antisite atoms, and, hence, on composition.展开更多
Ductility and electrical conductivity of metallic materials are inversely correlated with their strength,resulting in a difficulty of optimizing all three simultaneously. We design an Al-Sc-Zr-based alloy using semiso...Ductility and electrical conductivity of metallic materials are inversely correlated with their strength,resulting in a difficulty of optimizing all three simultaneously. We design an Al-Sc-Zr-based alloy using semisolid extrusion to yield a good trade-off between strength and ductility along with excellent electrical conductivity. The Al-0.35Sc-0.2Zr wire with a diameter of 3 mm exhibited the best combined properties: a tensile strength of 210 ± 2 MPa, elongation of 7.6% ± 0.5%, and an electrical conductivity of 34.9 ± 0.05 MS/m. The average particle size of nanosized Al3(Sc, Zr) precipitates increased from 6.5 ± 0.5 nm to 25.0 ± 0.5 nm as the aging time increased from 1 h to 96 h at 380 °C, accompanied by the corresponding volume fraction variation from(6.2 ± 0.1) × 10^(-4) to(3.7 ± 0.1) × 10^(-3). As proved by transmission electron microscopy observation, the high strength originates from the effective blockage of dislocation motion by numerous nanosized Al3(Sc, Zr) precipitates whilst both electrical conductivity and ductility remain at a high level due to the coherent precipitates possessing an extremely low electrical resistivity.展开更多
文摘Strongly ordered B2 compounds exist in many alloy systems. This paper presented an overview of their mechanical properties, which depend strongly on the concentrations of constitutional defects, that is, on the constitutional vacancies and antisite atoms, and, hence, on composition.
基金supported by the National Natural Science Foundation of China (Grant No. 51674077)the fund of the State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology (SKLAB02015005)
文摘Ductility and electrical conductivity of metallic materials are inversely correlated with their strength,resulting in a difficulty of optimizing all three simultaneously. We design an Al-Sc-Zr-based alloy using semisolid extrusion to yield a good trade-off between strength and ductility along with excellent electrical conductivity. The Al-0.35Sc-0.2Zr wire with a diameter of 3 mm exhibited the best combined properties: a tensile strength of 210 ± 2 MPa, elongation of 7.6% ± 0.5%, and an electrical conductivity of 34.9 ± 0.05 MS/m. The average particle size of nanosized Al3(Sc, Zr) precipitates increased from 6.5 ± 0.5 nm to 25.0 ± 0.5 nm as the aging time increased from 1 h to 96 h at 380 °C, accompanied by the corresponding volume fraction variation from(6.2 ± 0.1) × 10^(-4) to(3.7 ± 0.1) × 10^(-3). As proved by transmission electron microscopy observation, the high strength originates from the effective blockage of dislocation motion by numerous nanosized Al3(Sc, Zr) precipitates whilst both electrical conductivity and ductility remain at a high level due to the coherent precipitates possessing an extremely low electrical resistivity.