A new partitioning methodology is presented to accelerate 130nm and beyond large scale alternating phase shift mask(Alt PSM) design flow.This method deals with granularity self adaptively.Phas...A new partitioning methodology is presented to accelerate 130nm and beyond large scale alternating phase shift mask(Alt PSM) design flow.This method deals with granularity self adaptively.Phase conflicts resolution approaches are described and strategies guaranteeing phase compatible during layout compaction are also discussed.An efficient CAD prototype for dark field Alt PSM based on these algorithms is implemented.The experimental results on several industry layouts show that the tool can successfully cope with the rapid growth of phase conflicts with good quality and satisfy lower resource consumption with different requirements of precision and speedup.展开更多
An algorithm is presented for better legal solution in detailed placement of large scale mixed macros and standard cells IC design.Due to the limitation of computing complexity,an effective and efficient initial place...An algorithm is presented for better legal solution in detailed placement of large scale mixed macros and standard cells IC design.Due to the limitation of computing complexity,an effective and efficient initial placement is very important for detailed placement.Novelty of this algorithm lies in a better solution at initial stage by using network flow method to satisfy row capacity constraint and the thought of linear placement problem(LPP) to resolve overlaps.Moreover,divide and conquer strategy and other simplified methods are adopted to minimize complexity.Experimental results show that the algorithm can get an average of 16% wire length improvement on PAFLO in reasonable CPU time.展开更多
文摘A new partitioning methodology is presented to accelerate 130nm and beyond large scale alternating phase shift mask(Alt PSM) design flow.This method deals with granularity self adaptively.Phase conflicts resolution approaches are described and strategies guaranteeing phase compatible during layout compaction are also discussed.An efficient CAD prototype for dark field Alt PSM based on these algorithms is implemented.The experimental results on several industry layouts show that the tool can successfully cope with the rapid growth of phase conflicts with good quality and satisfy lower resource consumption with different requirements of precision and speedup.
文摘An algorithm is presented for better legal solution in detailed placement of large scale mixed macros and standard cells IC design.Due to the limitation of computing complexity,an effective and efficient initial placement is very important for detailed placement.Novelty of this algorithm lies in a better solution at initial stage by using network flow method to satisfy row capacity constraint and the thought of linear placement problem(LPP) to resolve overlaps.Moreover,divide and conquer strategy and other simplified methods are adopted to minimize complexity.Experimental results show that the algorithm can get an average of 16% wire length improvement on PAFLO in reasonable CPU time.