为了试验调查现有线路避雷器阀片在90/200μs冲击电流下的耐受能力,对标称放电电流为5 k A和10 k A的两种Zn O避雷器阀片分别进行了不同能量等级下放电冲击次数为18次的90/200μs冲击电流耐受特性试验,并进行了相同能量等级下单次90/200...为了试验调查现有线路避雷器阀片在90/200μs冲击电流下的耐受能力,对标称放电电流为5 k A和10 k A的两种Zn O避雷器阀片分别进行了不同能量等级下放电冲击次数为18次的90/200μs冲击电流耐受特性试验,并进行了相同能量等级下单次90/200μs冲击电流与4/10μs大电流冲击耐受特性对比试验。试验结果表明,相同能量等级下4/10μs大电流冲击对阀片造成的损伤大于单次90/200μs冲击电流造成的损伤;5 k A阀片最高可通过约3.5 k A的18次90/200μs冲击电流耐受特性试验,10 k A阀片最高可通过约7.3 k A的18次90/200μs冲击电流耐受特性试验;直流1 m A参考电压作为评价避雷器阀片性能判据的敏感度高于标称放电电流残压。展开更多
For a scintillating-fiber array fast-neutron radiography system,a point-spread-function computing model was introduced,and the simulation code was developed. The results of calculation show that fast-neutron radiograp...For a scintillating-fiber array fast-neutron radiography system,a point-spread-function computing model was introduced,and the simulation code was developed. The results of calculation show that fast-neutron radiographs vary with the size of fast neutron sources,the size of fiber cross-section and the imaging geometry. The results suggest that the following qualifications are helpful for a good point spread function: The cross-section of scintillating fibers not greater than 200 μm×200 μm,the size of neutron source as small as a few millimeters,the distance between the source and the scintillating fiber array greater than 1 m,and inspected samples placed as close as possible to the array. The results give suggestions not only to experiment considerations but also to the estimation of spatial resolution for a specific system.展开更多
文摘为了试验调查现有线路避雷器阀片在90/200μs冲击电流下的耐受能力,对标称放电电流为5 k A和10 k A的两种Zn O避雷器阀片分别进行了不同能量等级下放电冲击次数为18次的90/200μs冲击电流耐受特性试验,并进行了相同能量等级下单次90/200μs冲击电流与4/10μs大电流冲击耐受特性对比试验。试验结果表明,相同能量等级下4/10μs大电流冲击对阀片造成的损伤大于单次90/200μs冲击电流造成的损伤;5 k A阀片最高可通过约3.5 k A的18次90/200μs冲击电流耐受特性试验,10 k A阀片最高可通过约7.3 k A的18次90/200μs冲击电流耐受特性试验;直流1 m A参考电压作为评价避雷器阀片性能判据的敏感度高于标称放电电流残压。
基金Supported by the Foundation of Double-Hundred Talents of China Academy of Engineering Physics (Grant No. 2004R0301)
文摘For a scintillating-fiber array fast-neutron radiography system,a point-spread-function computing model was introduced,and the simulation code was developed. The results of calculation show that fast-neutron radiographs vary with the size of fast neutron sources,the size of fiber cross-section and the imaging geometry. The results suggest that the following qualifications are helpful for a good point spread function: The cross-section of scintillating fibers not greater than 200 μm×200 μm,the size of neutron source as small as a few millimeters,the distance between the source and the scintillating fiber array greater than 1 m,and inspected samples placed as close as possible to the array. The results give suggestions not only to experiment considerations but also to the estimation of spatial resolution for a specific system.