We introduce the definition of non-Archimedean 2-fuzzy 2-normed spaces and the concept of isometry which is appropriate to represent the notion of area preserving mapping in the spaces above. And then we can get isome...We introduce the definition of non-Archimedean 2-fuzzy 2-normed spaces and the concept of isometry which is appropriate to represent the notion of area preserving mapping in the spaces above. And then we can get isometry when a mapping satisfies AOPP and (*) (in article) by applying the Benz’s theorem about the Aleksandrov problem in non-Archimedean 2-fuzzy 2-normed spaces.展开更多
The purpose of this paper is to define the notions of convergence, Cauchy st–convergence, st–Cauchy, I –convergence and I –Cauchy for double sequences in 2–fuzzy n–normed spaces with respect to α–n–norms and ...The purpose of this paper is to define the notions of convergence, Cauchy st–convergence, st–Cauchy, I –convergence and I –Cauchy for double sequences in 2–fuzzy n–normed spaces with respect to α–n–norms and study certain classical and standard properties related to these notions.展开更多
As wind energy is becoming one of the fastestgrowing renewable energy resources,controlling large-scale wind turbines remains a challenging task due to its system model nonlinearities and high external uncertainties.T...As wind energy is becoming one of the fastestgrowing renewable energy resources,controlling large-scale wind turbines remains a challenging task due to its system model nonlinearities and high external uncertainties.The main goal of the current work is to propose an intelligent control of the wind turbine system without the need for model identification.For this purpose,a novel model-independent nonsingular terminal slidingmode control(MINTSMC)using the basic principles of the ultralocal model(ULM)and combined with the single input interval type-2 fuzzy logic control(SIT2-FLC)is developed for non-linear wind turbine pitch angle control.In the suggested control framework,the MINTSMC scheme is designed to regulate the wind turbine speed rotor,and a sliding-mode(SM)observer is adopted to estimate the unknown phenomena of the ULM.The auxiliary SIT2-FLC is added in the model-independent control structure to improve the rotor speed regulation and compensate for the SM observation estimation error.Extensive examinations and comparative analyses were made using a real-time softwarein-the-loop(RT-SiL)based on the dSPACE 1202 board to appraise the efficiency and applicability of the suggested modelindependent scheme in a real-time testbed.展开更多
This article mainly investigates the fuzzy optimization robust control issue for nonlinear networked systems characterized by the interval type-2(IT2)fuzzy technique under a differential evolution algorithm.To provide...This article mainly investigates the fuzzy optimization robust control issue for nonlinear networked systems characterized by the interval type-2(IT2)fuzzy technique under a differential evolution algorithm.To provide a more reasonable utilization of the constrained communication channel,a novel adaptive memory event-triggered(AMET)mechanism is developed,where two event-triggered thresholds can be dynamically adjusted in the light of the current system information and the transmitted historical data.Sufficient conditions with less conservative design of the fuzzy imperfect premise matching(IPM)controller are presented by introducing the Wirtinger-based integral inequality,the information of membership functions(MFs)and slack matrices.Subsequently,under the IPM policy,a new MFs intelligent optimization technique that takes advantage of the differential evolution algorithm is first provided for IT2 TakagiSugeno(T-S)fuzzy systems to update the fuzzy controller MFs in real-time and achieve a better system control effect.Finally,simulation results demonstrate that the proposed control scheme can obtain better system performance in the case of using fewer communication resources.展开更多
In order to measure the uncertain information of a type- 2 intuitionistic fuzzy set (T21FS), an entropy measure of T21FS is presented by using the constructive principles. The proposed entropy measure is also proved...In order to measure the uncertain information of a type- 2 intuitionistic fuzzy set (T21FS), an entropy measure of T21FS is presented by using the constructive principles. The proposed entropy measure is also proved to satisfy all of the constructive principles. Further, a novel concept of the type-2 triangular in- tuitionistic trapezoidal fuzzy set (T2TITrFS) is developed, and a geometric interpretation of the T2TITrFS is given to comprehend it completely or correctly in a more intuitive way. To deal with a more general uncertain complex system, the constructive principles of an entropy measure of T2TITrFS are therefore proposed on the basis of the axiomatic definition of the type-2 intuitionisic fuzzy entropy measure. This paper elicits a formula of type-2 triangular intuitionistic trapezoidal fuzzy entropy and verifies that it does sa- tisfy the constructive principles. Two examples are given to show the efficiency of the proposed entropy of T2TITrFS in describing the uncertainty of the type-2 intuitionistic fuzzy information and illustrate its application in type-2 triangular intuitionistic trapezodial fuzzy decision making problems.展开更多
Local markets in East Africa have been destroyed by raging fires,leading to the loss of life and property in the nearby communities.Electrical circuits,arson,and neglected charcoal stoves are the major causes of these...Local markets in East Africa have been destroyed by raging fires,leading to the loss of life and property in the nearby communities.Electrical circuits,arson,and neglected charcoal stoves are the major causes of these fires.Previous methods,i.e.,satellites,are expensive to maintain and cause unnecessary delays.Also,unit-smoke detectors are highly prone to false alerts.In this paper,an Interval Type-2 TSK fuzzy model for an intelligent lightweight fire intensity detection algorithm with decision-making in low-power devices is proposed using a sparse inference rules approach.A free open–source MATLAB/Simulink fuzzy toolbox integrated into MATLAB 2018a is used to investigate the performance of the Interval Type-2 fuzzy model.Two crisp input parameters,namely:FIT and FIG��are used.Results show that the Interval Type-2 model achieved an accuracy value of FIO�=98.2%,MAE=1.3010,MSE=1.6938 and RMSE=1.3015 using regression analysis.The study shall assist the firefighting personnel in fully understanding and mitigating the current level of fire danger.As a result,the proposed solution can be fully implemented in low-cost,low-power fire detection systems to monitor the state of fire with improved accuracy and reduced false alerts.Through informed decision-making in low-cost fire detection devices,early warning notifications can be provided to aid in the rapid evacuation of people,thereby improving fire safety surveillance,management,and protection for the market community.展开更多
文摘We introduce the definition of non-Archimedean 2-fuzzy 2-normed spaces and the concept of isometry which is appropriate to represent the notion of area preserving mapping in the spaces above. And then we can get isometry when a mapping satisfies AOPP and (*) (in article) by applying the Benz’s theorem about the Aleksandrov problem in non-Archimedean 2-fuzzy 2-normed spaces.
文摘The purpose of this paper is to define the notions of convergence, Cauchy st–convergence, st–Cauchy, I –convergence and I –Cauchy for double sequences in 2–fuzzy n–normed spaces with respect to α–n–norms and study certain classical and standard properties related to these notions.
文摘As wind energy is becoming one of the fastestgrowing renewable energy resources,controlling large-scale wind turbines remains a challenging task due to its system model nonlinearities and high external uncertainties.The main goal of the current work is to propose an intelligent control of the wind turbine system without the need for model identification.For this purpose,a novel model-independent nonsingular terminal slidingmode control(MINTSMC)using the basic principles of the ultralocal model(ULM)and combined with the single input interval type-2 fuzzy logic control(SIT2-FLC)is developed for non-linear wind turbine pitch angle control.In the suggested control framework,the MINTSMC scheme is designed to regulate the wind turbine speed rotor,and a sliding-mode(SM)observer is adopted to estimate the unknown phenomena of the ULM.The auxiliary SIT2-FLC is added in the model-independent control structure to improve the rotor speed regulation and compensate for the SM observation estimation error.Extensive examinations and comparative analyses were made using a real-time softwarein-the-loop(RT-SiL)based on the dSPACE 1202 board to appraise the efficiency and applicability of the suggested modelindependent scheme in a real-time testbed.
基金supported by the National Natural Science Foundation of China(61973105,62373137)。
文摘This article mainly investigates the fuzzy optimization robust control issue for nonlinear networked systems characterized by the interval type-2(IT2)fuzzy technique under a differential evolution algorithm.To provide a more reasonable utilization of the constrained communication channel,a novel adaptive memory event-triggered(AMET)mechanism is developed,where two event-triggered thresholds can be dynamically adjusted in the light of the current system information and the transmitted historical data.Sufficient conditions with less conservative design of the fuzzy imperfect premise matching(IPM)controller are presented by introducing the Wirtinger-based integral inequality,the information of membership functions(MFs)and slack matrices.Subsequently,under the IPM policy,a new MFs intelligent optimization technique that takes advantage of the differential evolution algorithm is first provided for IT2 TakagiSugeno(T-S)fuzzy systems to update the fuzzy controller MFs in real-time and achieve a better system control effect.Finally,simulation results demonstrate that the proposed control scheme can obtain better system performance in the case of using fewer communication resources.
基金supported by the National Natural Science Foundation of China(7137115670971017)the Research Grants Council of the Hong Kong Special Administrative Region,China(City U112111)
文摘In order to measure the uncertain information of a type- 2 intuitionistic fuzzy set (T21FS), an entropy measure of T21FS is presented by using the constructive principles. The proposed entropy measure is also proved to satisfy all of the constructive principles. Further, a novel concept of the type-2 triangular in- tuitionistic trapezoidal fuzzy set (T2TITrFS) is developed, and a geometric interpretation of the T2TITrFS is given to comprehend it completely or correctly in a more intuitive way. To deal with a more general uncertain complex system, the constructive principles of an entropy measure of T2TITrFS are therefore proposed on the basis of the axiomatic definition of the type-2 intuitionisic fuzzy entropy measure. This paper elicits a formula of type-2 triangular intuitionistic trapezoidal fuzzy entropy and verifies that it does sa- tisfy the constructive principles. Two examples are given to show the efficiency of the proposed entropy of T2TITrFS in describing the uncertainty of the type-2 intuitionistic fuzzy information and illustrate its application in type-2 triangular intuitionistic trapezodial fuzzy decision making problems.
文摘Local markets in East Africa have been destroyed by raging fires,leading to the loss of life and property in the nearby communities.Electrical circuits,arson,and neglected charcoal stoves are the major causes of these fires.Previous methods,i.e.,satellites,are expensive to maintain and cause unnecessary delays.Also,unit-smoke detectors are highly prone to false alerts.In this paper,an Interval Type-2 TSK fuzzy model for an intelligent lightweight fire intensity detection algorithm with decision-making in low-power devices is proposed using a sparse inference rules approach.A free open–source MATLAB/Simulink fuzzy toolbox integrated into MATLAB 2018a is used to investigate the performance of the Interval Type-2 fuzzy model.Two crisp input parameters,namely:FIT and FIG��are used.Results show that the Interval Type-2 model achieved an accuracy value of FIO�=98.2%,MAE=1.3010,MSE=1.6938 and RMSE=1.3015 using regression analysis.The study shall assist the firefighting personnel in fully understanding and mitigating the current level of fire danger.As a result,the proposed solution can be fully implemented in low-cost,low-power fire detection systems to monitor the state of fire with improved accuracy and reduced false alerts.Through informed decision-making in low-cost fire detection devices,early warning notifications can be provided to aid in the rapid evacuation of people,thereby improving fire safety surveillance,management,and protection for the market community.