期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
Blaschke张量的行列式为常数的2维子流形的研究
1
作者
余应佳
郭震
《数学杂志》
2022年第1期27-39,共13页
本文研究了S^(2+p)中2维子流形的莫比乌斯刚性问题.设M^(2)是^(2+p)维单位球S^(2+p)中的无脐子流形,M^(2)在S^(2+p)的莫比乌斯变换群下的四个莫比乌斯基本量为莫比乌斯度量g,Blaschke张量A,莫比乌斯形式Φ以及莫比乌斯第二基本形式B,利...
本文研究了S^(2+p)中2维子流形的莫比乌斯刚性问题.设M^(2)是^(2+p)维单位球S^(2+p)中的无脐子流形,M^(2)在S^(2+p)的莫比乌斯变换群下的四个莫比乌斯基本量为莫比乌斯度量g,Blaschke张量A,莫比乌斯形式Φ以及莫比乌斯第二基本形式B,利用不等式估计,证明了下列刚性定理:设x:M^(2)→S^(2+p)是^(2+p)维单位球S^(2+p)中莫比乌斯形式消失的2维紧致子流形,Blaschke张量A的行列式Det A=c(const)>0,若tr A≥1/4,那么x(M^(2))莫比乌斯等价于S^(2+p)中常曲率极小子流形或者S^(3)(1/√1+c^(2))中环面S^(1)(r)×S^(1)(√1/1+c^(2)-r^(2)),其中r^(2)=2-√1-64c/4(1+c^(2)).本文的证明补充了文献[3]中2维子流形情形.
展开更多
关键词
2
维
子流形
莫比乌斯度量
莫比乌斯形式
莫比乌斯第二基本形式
BLASCHKE张量
下载PDF
职称材料
题名
Blaschke张量的行列式为常数的2维子流形的研究
1
作者
余应佳
郭震
机构
云南师范大学数学学院
出处
《数学杂志》
2022年第1期27-39,共13页
文摘
本文研究了S^(2+p)中2维子流形的莫比乌斯刚性问题.设M^(2)是^(2+p)维单位球S^(2+p)中的无脐子流形,M^(2)在S^(2+p)的莫比乌斯变换群下的四个莫比乌斯基本量为莫比乌斯度量g,Blaschke张量A,莫比乌斯形式Φ以及莫比乌斯第二基本形式B,利用不等式估计,证明了下列刚性定理:设x:M^(2)→S^(2+p)是^(2+p)维单位球S^(2+p)中莫比乌斯形式消失的2维紧致子流形,Blaschke张量A的行列式Det A=c(const)>0,若tr A≥1/4,那么x(M^(2))莫比乌斯等价于S^(2+p)中常曲率极小子流形或者S^(3)(1/√1+c^(2))中环面S^(1)(r)×S^(1)(√1/1+c^(2)-r^(2)),其中r^(2)=2-√1-64c/4(1+c^(2)).本文的证明补充了文献[3]中2维子流形情形.
关键词
2
维
子流形
莫比乌斯度量
莫比乌斯形式
莫比乌斯第二基本形式
BLASCHKE张量
Keywords
2
-dimensional submanifolds
Moebius metric
Moebius form
Moebius second fundamental form
Blaschke tensor
分类号
O186.12 [理学—数学]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
Blaschke张量的行列式为常数的2维子流形的研究
余应佳
郭震
《数学杂志》
2022
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部