Recently, cryptographic applications based on finite fields have attracted much attention. The most demanding finite field arithmetic operation is multiplication. This investigation proposes a new multiplication algor...Recently, cryptographic applications based on finite fields have attracted much attention. The most demanding finite field arithmetic operation is multiplication. This investigation proposes a new multiplication algorithm over GF(2^m) using the dual basis representation. Based on the proposed algorithm, a parallel-in parallel-out systolic multiplier is presented, The architecture is optimized in order to minimize the silicon covered area (transistor count). The experimental results reveal that the proposed bit-parallel multiplier saves about 65% space complexity and 33% time complexity as compared to the traditional multipliers for a general polynomial and dual basis of GF(2^m).展开更多
2-frames in 2-Hilbert spaces are studied and some results on it are presented. The tensor product of 2-frames in 2-Hilbert spaces is introduced. It is shown that the tensor product of two 2-frames is a 2-frame for the...2-frames in 2-Hilbert spaces are studied and some results on it are presented. The tensor product of 2-frames in 2-Hilbert spaces is introduced. It is shown that the tensor product of two 2-frames is a 2-frame for the tensor product of Hilbert spaces. Some results on tensor product of 2-frames are established.展开更多
本文利用正投影的概念将点到直线与点到平面的距离公式统一起来并作推了广。我们证明了:Ⅰ 设O≠δ=(a_1,a_2,…,a_n)∈R^n,则R^n中的点(y_1,y_2,…,y_n)到R^n的子空间W={x_1,x_2,…,x_n)∈R^n|sum from i=1 n(a_ix_i=0}的距离为|sum fr...本文利用正投影的概念将点到直线与点到平面的距离公式统一起来并作推了广。我们证明了:Ⅰ 设O≠δ=(a_1,a_2,…,a_n)∈R^n,则R^n中的点(y_1,y_2,…,y_n)到R^n的子空间W={x_1,x_2,…,x_n)∈R^n|sum from i=1 n(a_ix_i=0}的距离为|sum from i=1 n(a_iy_i)/(sum from i=1 na_i^2)^(1/2);Ⅱ 设O≠δ=(a_1,a_2,…,a_n,…)∈l^2,则l^2中的点(y_1,y_2,…,y_n,…)到l_2的子空间W={(x_1,x_2,…,x_n,…)∈l^2|sum from n=1 ∝(a_nx_n)}的距离为|sum from n=1 ∝(a_ny_n)|/(sum from n=1 ∝a_n^2)^(1/2)。展开更多
文摘Recently, cryptographic applications based on finite fields have attracted much attention. The most demanding finite field arithmetic operation is multiplication. This investigation proposes a new multiplication algorithm over GF(2^m) using the dual basis representation. Based on the proposed algorithm, a parallel-in parallel-out systolic multiplier is presented, The architecture is optimized in order to minimize the silicon covered area (transistor count). The experimental results reveal that the proposed bit-parallel multiplier saves about 65% space complexity and 33% time complexity as compared to the traditional multipliers for a general polynomial and dual basis of GF(2^m).
文摘2-frames in 2-Hilbert spaces are studied and some results on it are presented. The tensor product of 2-frames in 2-Hilbert spaces is introduced. It is shown that the tensor product of two 2-frames is a 2-frame for the tensor product of Hilbert spaces. Some results on tensor product of 2-frames are established.
文摘本文利用正投影的概念将点到直线与点到平面的距离公式统一起来并作推了广。我们证明了:Ⅰ 设O≠δ=(a_1,a_2,…,a_n)∈R^n,则R^n中的点(y_1,y_2,…,y_n)到R^n的子空间W={x_1,x_2,…,x_n)∈R^n|sum from i=1 n(a_ix_i=0}的距离为|sum from i=1 n(a_iy_i)/(sum from i=1 na_i^2)^(1/2);Ⅱ 设O≠δ=(a_1,a_2,…,a_n,…)∈l^2,则l^2中的点(y_1,y_2,…,y_n,…)到l_2的子空间W={(x_1,x_2,…,x_n,…)∈l^2|sum from n=1 ∝(a_nx_n)}的距离为|sum from n=1 ∝(a_ny_n)|/(sum from n=1 ∝a_n^2)^(1/2)。