期刊文献+
共找到67篇文章
< 1 2 4 >
每页显示 20 50 100
基于一维多尺度神经网络和库普曼池化的滚动轴承故障诊断方法
1
作者 孙祯 周素霞 《科学技术与工程》 北大核心 2024年第24期10297-10304,共8页
滚动轴承作为机械运转的核心部件,其发生故障会导致旋转机械运行状态的恶化。卷积网络作为滚动轴承故障诊断的一种方法,针对其固定窗口局限性,结合一维卷积神经网络(1D convolutional neural network, 1D-CNN)在处理一维数据的优势,利... 滚动轴承作为机械运转的核心部件,其发生故障会导致旋转机械运行状态的恶化。卷积网络作为滚动轴承故障诊断的一种方法,针对其固定窗口局限性,结合一维卷积神经网络(1D convolutional neural network, 1D-CNN)在处理一维数据的优势,利用多尺度思想在同一层同时使用不同大小的窗口提取信号特征,根据时间维度信息对异常检测方法的影响,将1D-CNN的池化层与Koopman模型结合,得到高阶动态特征;最后将所得到的故障特征输入全连接层中进行故障诊断。为验证模型优势,对所提出的初始模型和两种改进模型在相同工况下进行对比,同时与支持向量机(support vector machine, SVM)和BP神经网络(back propagation neural network, BPNN)等算法进行对比分析。结果表明:所提模型的识别效果较好,滚动轴承故障准确率可以达到99.99%。 展开更多
关键词 滚动轴承 故障诊断 一维多尺度卷积网络(1D-cnn) Koopman池化
下载PDF
基于一维卷积神经网络的语音识别系统构建方法
2
作者 刘洋 廉咪咪 《电声技术》 2024年第10期77-79,共3页
提出一种基于一维卷积神经网络(1D Convolutional Neural Network,1D-CNN)的语音识别系统。首先研究基于1D-CNN的语音识别系统框架,其次重点介绍使用TensorFlow构建该系统的方法,最后采用Libri Speech数据集,在无噪声、轻微噪声和严重... 提出一种基于一维卷积神经网络(1D Convolutional Neural Network,1D-CNN)的语音识别系统。首先研究基于1D-CNN的语音识别系统框架,其次重点介绍使用TensorFlow构建该系统的方法,最后采用Libri Speech数据集,在无噪声、轻微噪声和严重噪声条件下进行系统测试,并使用准确率、召回率、F1等指标进行评估。实验结果表明,所提出的系统在无噪声和轻微噪声条件下具有较高的识别准确率和稳定性,即使在严重噪声环境中也表现出较好的健壮性。 展开更多
关键词 一维卷积神经网络(1D-cnn) 语音识别 系统构建 TensorFlow框架
下载PDF
基于Fast R-CNN的车辆目标检测 被引量:66
3
作者 曹诗雨 刘跃虎 李辛昭 《中国图象图形学报》 CSCD 北大核心 2017年第5期671-677,共7页
目的在传统车辆目标检测问题中,需要针对不同图像场景选择适合的特征。为此提出一种基于快速区域卷积神经网络(Fast R-CNN)的场景图像车辆目标发现方法,避免传统车辆目标检测问题中需要设计手工特征的问题。方法该方法基于深度学习卷积... 目的在传统车辆目标检测问题中,需要针对不同图像场景选择适合的特征。为此提出一种基于快速区域卷积神经网络(Fast R-CNN)的场景图像车辆目标发现方法,避免传统车辆目标检测问题中需要设计手工特征的问题。方法该方法基于深度学习卷积神经网络思想。首先使用待检测车辆图像定义视觉任务。利用选择性搜索算法获得样本图像的候选区域,将候选区域坐标与视觉任务示例图像一起输入网络学习。示例图像经过深度卷积神经网络中的卷积层,池化层计算,最终得到深度卷积特征。在输入时没有规定示例图像的规格,此时得到的卷积特征规格不定。然后,基于Fast R-CNN网络结构,通过感兴趣区域池化层规格化特征,最后将特征输入不同的全连接分支,并行回归计算特征分类,以及检测框坐标值。经过多次迭代训练,最后得到与指定视觉任务强相关的目标检测模型,具有训练好的权重参数。在新的场景图像中,可以通过该目标检测模型检测给定类型的车辆目标。结果首先确定视觉任务包含公交车,小汽车两类,背景场景是城市道路。利用与视觉任务强相关的测试样本集对目标检测模型进行测试,实验表明,当测试样本场景与视觉任务相关度越高,且样本中车辆目标的形变越小,得到的车辆目标检测模型对车辆目标检测具有良好的检测效果。结论本文提出的车辆目标检测方法,利用卷积神经网络提取卷积特征代替传统手工特征提取过程,通过Fast R-CNN对由示例图像组成定义的视觉任务训练得到了效果良好的车辆目标检测模型。该模型可以对与视觉任务强相关新场景图像进行效果良好的车辆目标检测。本文结合深度学习卷积神经网络思想,利用卷积特征替代传统手工特征,避免了传统检测问题中特征选择问题。深层卷积特征具有更好的表达能力。基于Fast R-CNN网络,最� 展开更多
关键词 快速区域卷积神经网络 深度学习 车辆 视觉任务 目标检测
原文传递
Faster R-CNN模型在车辆检测中的应用 被引量:64
4
作者 王林 张鹤鹤 《计算机应用》 CSCD 北大核心 2018年第3期666-670,共5页
针对传统机器学习方法在车辆检测应用中易受光照、目标尺度和图像质量等因素影响,效率低下且泛化能力较差的问题,提出一种基于改进的较快的基于区域卷积神经网络(R-CNN)模型的车辆检测方法。该方法以Faster R-CNN模型为基础,通过对输入... 针对传统机器学习方法在车辆检测应用中易受光照、目标尺度和图像质量等因素影响,效率低下且泛化能力较差的问题,提出一种基于改进的较快的基于区域卷积神经网络(R-CNN)模型的车辆检测方法。该方法以Faster R-CNN模型为基础,通过对输入图像进行卷积和池化等操作提取车辆特征,结合多尺度训练和难负样本挖掘策略降低复杂环境的影响,利用KITTI数据集对深度神经网络模型进行训练,并采集实际场景中的图像进行测试。仿真实验中,在保证检测时间的情况下,相对原Faster R-CNN算法检测精确度提高了约8%。实验结果表明,所提方法能够自动地提取车辆特征,解决了传统方法提取特征费时费力的问题,同时提高了车辆检测精确度,具有良好的泛化能力和适用范围。 展开更多
关键词 车辆检测 FASTER R-cnn模型 区域建议网络 难负样本挖掘 KITTI数据集
下载PDF
基于改进掩膜区域卷积神经网络的输电线路绝缘子自爆检测 被引量:19
5
作者 苟军年 杜愫愫 刘力 《电工技术学报》 EI CSCD 北大核心 2023年第1期47-59,共13页
由于背景复杂、目标所占像素比例较小,掩膜区域卷积神经网络(Mask R-CNN)模型对输电线路绝缘子缺陷检测能力不足,该文提出一种改进的MaskR-CNN模型。具体地,首先,在特征提取网络中引入卷积注意力模块(CBAM),分别从通道和空间提升小目标... 由于背景复杂、目标所占像素比例较小,掩膜区域卷积神经网络(Mask R-CNN)模型对输电线路绝缘子缺陷检测能力不足,该文提出一种改进的MaskR-CNN模型。具体地,首先,在特征提取网络中引入卷积注意力模块(CBAM),分别从通道和空间提升小目标特征保持性;其次,使用全局交并比(GIoU)计算目标间的相似度,提升定位准确性;最后,使用Tversky损失计算掩膜分支的损失,以提升不平衡样本下的检测效果。使用某输电运检中心无人机巡检作业所得具有自爆缺陷的绝缘子照片作为数据集对该模型进行验证,实验结果表明,与原始Mask R-CNN模型相比,该方法的平均精确率AP50:90、AP50和AP75分别提升至0.56、0.79和0.72;与三种经典目标检测算法相比,该算法具有较高的检测精度,模型的分割性能有一定提升,且比原始模型具有更好的鲁棒性,可以满足电力巡检中准确性和快速性的要求。 展开更多
关键词 绝缘子缺陷检测 掩膜区域卷积神经网络 卷积注意力模块 特征融合 全局交并比 Tversky损失
下载PDF
基于改进的Faster R-CNN目标检测算法 被引量:19
6
作者 周兵 李润鑫 +1 位作者 尚振宏 李晓武 《激光与光电子学进展》 CSCD 北大核心 2020年第10期97-104,共8页
目标检测是计算机视觉研究中的热门问题,其中加速区域卷积神经网络(Faster R-CNN)对目标检测具有指导意义。针对Faster R-CNN算法在目标检测中准确率不高的问题,先对数据进行增强处理;然后对提取的特征图进行裁剪,利用双线性插值法代替... 目标检测是计算机视觉研究中的热门问题,其中加速区域卷积神经网络(Faster R-CNN)对目标检测具有指导意义。针对Faster R-CNN算法在目标检测中准确率不高的问题,先对数据进行增强处理;然后对提取的特征图进行裁剪,利用双线性插值法代替感兴趣区域池化操作,分类时采用软非极大值抑制(Soft-NMS)算法。实验结果表明,该算法在PASCAL VOC2007、PASCAL VOC07+12数据集下的准确率分别为76.40%和81.20%,相较Faster R-CNN算法分别提升了6.50个百分点和8.00个百分点。没有进行数据增强的情况下,在COCO 2014数据集上的准确率相较Faster R-CNN算法提升了2.40个百分点。 展开更多
关键词 目标检测 加速区域卷积神经网络(Faster R-cnn) 感兴趣区域池化 软非极大值抑制(Soft-NMS)
原文传递
基于改进Faster R-CNN的铁路客车螺栓检测研究 被引量:13
7
作者 赵江平 徐恒 党悦悦 《中国安全科学学报》 CSCD 北大核心 2021年第7期82-89,共8页
为确保铁路客车运行安全,提出一种基于快速区域卷积神经网络(Faster R-CNN)目标检测的客车关键部件图像缺陷检测算法,针对算法在小尺度螺栓检测方面存在的问题提出2点改进,首先,结合深度残差网络和Inception网络两者优点替换原VGG16网络... 为确保铁路客车运行安全,提出一种基于快速区域卷积神经网络(Faster R-CNN)目标检测的客车关键部件图像缺陷检测算法,针对算法在小尺度螺栓检测方面存在的问题提出2点改进,首先,结合深度残差网络和Inception网络两者优点替换原VGG16网络,并增加上采样层,解决图像经过卷积网络特征信息流失严重的问题;其次,通过K-means++聚类算法优化区域建议网络(RPN)中锚点的尺寸和比例,提高生成建议区域的精确性,解决缺陷目标定位不准确的问题;最后,用创建的螺栓缺陷数据集进行对比验证。结果表明:改进后的算法检测准确率可达87.4%,相较原算法提高8.9%,且对于多目标缺陷与混淆目标,漏检率与误检率分别降低9.9%和11%。 展开更多
关键词 铁路客车 缺陷图像 目标检测 Faster R-cnn K-means++
下载PDF
基于改进Faster R-CNN的轮胎缺陷检测方法 被引量:11
8
作者 吴则举 焦翠娟 陈亮 《计算机应用》 CSCD 北大核心 2021年第7期1939-1946,共8页
轮胎生产过程中出现的胎侧异物、胎冠异物、气泡、胎冠开根以及胎侧开根等缺陷会影响轮胎出厂后的使用,所以出厂使用前需要对每条轮胎进行无损检测。为了实现在工业中对于轮胎缺陷进行自动检测,提出了一种基于改进Faster R-CNN的轮胎缺... 轮胎生产过程中出现的胎侧异物、胎冠异物、气泡、胎冠开根以及胎侧开根等缺陷会影响轮胎出厂后的使用,所以出厂使用前需要对每条轮胎进行无损检测。为了实现在工业中对于轮胎缺陷进行自动检测,提出了一种基于改进Faster R-CNN的轮胎缺陷自动检测方法。首先,在预处理阶段,用直方图均衡化方法对轮胎图象的灰度进行拉伸,提高数据集的对比度,使图像目标和背景的灰度值产生明显差异;其次,为提高轮胎缺陷位置检测和识别的准确率,对Faster R-CNN结构进行改进,即把ZF卷积神经网络中第三层的卷积特征和第五层的卷积特征结合后输出,并将其作为区域建议网络层的输入;然后,在RoI pooling层之后引入在线难例挖掘(OHEM)算法,使轮胎缺陷检测的准确率得到进一步的提高。实验结果表明,改进后的Faster R-CNN的轮胎缺陷检测方法可以准确地分类和定位轮胎X射线图像缺陷,平均测试准确率可以达到95.7%。此外,还可以通过对网络进行微调来获得新的检测模型以检测其他类型的缺陷。 展开更多
关键词 Faster R-cnn 轮胎缺陷检测 ZF卷积神经网络 在线难例挖掘
下载PDF
基于膨胀卷积的多尺度焊缝缺陷检测算法 被引量:9
9
作者 谷静 吴怡宁 孟鑫昊 《光电子.激光》 CAS CSCD 北大核心 2022年第1期61-66,共6页
本文针对焊缝缺陷尺度变化不一导致的检测率效果不理想,提出了一种基于更快地区域卷积神经网络(faster region-based convolutional neural network, Faster R-CNN)对焊缝缺陷检测的改进算法。算法利用膨胀卷积在不同扩张率下进行特征融... 本文针对焊缝缺陷尺度变化不一导致的检测率效果不理想,提出了一种基于更快地区域卷积神经网络(faster region-based convolutional neural network, Faster R-CNN)对焊缝缺陷检测的改进算法。算法利用膨胀卷积在不同扩张率下进行特征融合,结合不同感受野下的卷积核更全面地提取不同尺度的特征信息,来提升目标的检测精度。同时利用深度可分离卷积,来对模型进行压缩,提高检测速度。实验表明,改进后的网络在保证运行速度的同时,能够提高检测速度,检测精度可以达到72%。 展开更多
关键词 焊缝缺陷检测 更快地区域卷积神经网络(faster region-based convolutional neural network Faster R-cnn) 特征融合 膨胀卷积
原文传递
基于卷积神经网络的领域适配模型的多工况迁移的轴承故障诊断 被引量:9
10
作者 钱思宇 秦东晨 +1 位作者 陈江义 袁峰 《振动与冲击》 EI CSCD 北大核心 2022年第24期192-200,共9页
针对故障滚动轴承在单一工况数据下训练的深度学习模型无法在复杂工况下无法实现有效的故障诊断,提出一种基于卷积神经网络的领域适配(convolutional neural network-domain adaptation,CNN-DA)模型。卷积网络用于对故障振动信号进行高... 针对故障滚动轴承在单一工况数据下训练的深度学习模型无法在复杂工况下无法实现有效的故障诊断,提出一种基于卷积神经网络的领域适配(convolutional neural network-domain adaptation,CNN-DA)模型。卷积网络用于对故障振动信号进行高层特征提取,网络首尾加入通道注意力机制(channel attention mechanism,CAM),以动态分配特征通道的权重,减小无效信息的干扰。结合领域自适应方法,将特征提取层获取到的高层故障特征进行源、目标域领域适配,领域适配模块整合了全域适配和类别域适配,以使两个领域中相同故障标签的特征的数据分布逐渐趋于重合,最后将深度学习模型应用于多种不同工况迁移的场合进行训练,得到训练结果和测试结果。通过不同来源数据集的试验,在多种工况迁移下测试模型,结果表明提出的模型能够应对复杂工况变化下的滚动轴承故障检测。 展开更多
关键词 故障诊断 深度学习 卷枳神经网络的领域适配(cnn-DA) 领域自适应
下载PDF
基于深度卷积神经网络的舰载机目标检测 被引量:7
11
作者 朱兴动 田少兵 +3 位作者 黄葵 范加利 王正 陈化成 《计算机应用》 CSCD 北大核心 2020年第5期1529-1533,共5页
针对航母甲板面舰载机密集易遮挡,舰载机目标难以检测,且检测效果易受光照条件和目标尺度影响的问题,提出了一种改进的更快的区域卷积神经网络(Faster R-CNN)舰载机目标检测方法。该方法设计了带排斥损失策略的损失函数,并结合多尺度训... 针对航母甲板面舰载机密集易遮挡,舰载机目标难以检测,且检测效果易受光照条件和目标尺度影响的问题,提出了一种改进的更快的区域卷积神经网络(Faster R-CNN)舰载机目标检测方法。该方法设计了带排斥损失策略的损失函数,并结合多尺度训练,利用实验室条件下采集的图片对深度卷积神经网络进行训练并测试。测试实验显示,相对于原始Faster R-CNN检测模型,改进后的模型对遮挡舰载机目标具有良好的检测效果,召回率提高了7个百分点,精确率提高了6个百分点。实验结果表明,所提的改进方法能够自动全面地提取舰载机目标特征,解决了遮挡舰载机目标的检测问题,检测精度和速度均能够满足实际需要,且在不同的光照条件和目标尺度下适应性强,鲁棒性较高。 展开更多
关键词 舰载机目标检测 排斥损失策略 更快的区域卷积神经网络 多尺度训练
下载PDF
基于Faster R-CNN的诱导维修自动交互设计 被引量:6
12
作者 罗又文 王崴 瞿珏 《计算机工程与应用》 CSCD 北大核心 2019年第12期181-187,共7页
随着增强现实技术在机械领域的发展,已经有越来越多的例子证明了AR在工业维修方面提高操作效率的优越性。为了提高诱导维修操作过程的效率,针对传统的增强现实维修系统不能对维修状态进行感知和判断的问题,提出了一种基于快速区域卷积... 随着增强现实技术在机械领域的发展,已经有越来越多的例子证明了AR在工业维修方面提高操作效率的优越性。为了提高诱导维修操作过程的效率,针对传统的增强现实维修系统不能对维修状态进行感知和判断的问题,提出了一种基于快速区域卷积神经网络(Faster R-CNN)的进程识别自动交互方法。该方法基于Faster R-CNN建立零件识别的深度神经网络模型并利用反向传播进一步微调,通过对零件的识别输出零件的类型和编号,反馈给系统触发相应的操作步骤,无需用户进行另外的交互操作。实验结果表明,基于深度神经网络的维修零件识别率可达95%,平均识别速度为每帧300ms,满足AR诱导维修系统的精度和交互性要求。 展开更多
关键词 增强现实 深度学习 快速区域卷积神经网络(Faster R-cnn) 诱导维修 自动交互
下载PDF
基于Faster R-CNN的海底管道智能检测方法 被引量:5
13
作者 俞进 唐建华 +1 位作者 神祥凯 刘金海 《中国安全科学学报》 CAS CSCD 北大核心 2023年第6期80-87,共8页
为提高海底管道缺陷及组件的检测精度并实现智能化海底管道安全检测,提出一种基于快速区域卷积神经网络(Faster R-CNN)的海底管道智能检测方法。首先,通过基值校正和分段映射-伪彩色化方法,将漏磁检测信号转化为伪彩色图,以增强漏磁信... 为提高海底管道缺陷及组件的检测精度并实现智能化海底管道安全检测,提出一种基于快速区域卷积神经网络(Faster R-CNN)的海底管道智能检测方法。首先,通过基值校正和分段映射-伪彩色化方法,将漏磁检测信号转化为伪彩色图,以增强漏磁信号的关键特征;其次,基于多模态数据增强来提升检测模型的泛化能力;然后,基于多模态数据增强后的样本训练改进的Faster R-CNN网络,建立最优的智能检测模型;最后,以试验场和渤海在役管道为例,验证所提方法的有效性。结果表明:所提方法的平均检测精度可达93.8%,相较原始的Faster R-CNN算法提高8%,且平均交并比达到0.75,能够精准地实现海底油气管道多目标检测,保障海底管道的安全运行。 展开更多
关键词 快速区域卷积神经网络(Faster R-cnn) 海底管道 智能检测 漏磁内检测 多目标检测
下载PDF
一种基于3D-CNN的微表情识别算法 被引量:5
14
作者 吴进 闵育 +1 位作者 李聪 张伟华 《电讯技术》 北大核心 2019年第10期1115-1120,共6页
微表情是一种持续时间很短暂的面部表情。针对其识别率低的问题,提出了一种基于三维卷积神经网络(3D Convolutionnal Neural Network,3D-CNN)的微表情识别算法。使用Keras作为网络框架,在3D-VGG-Block(3Dimension Visual Geometry Group... 微表情是一种持续时间很短暂的面部表情。针对其识别率低的问题,提出了一种基于三维卷积神经网络(3D Convolutionnal Neural Network,3D-CNN)的微表情识别算法。使用Keras作为网络框架,在3D-VGG-Block(3Dimension Visual Geometry Group Block,3D-VGG-Block)的基础上加入批量归一化算法以及丢弃法,提升网络深度与训练速度的同时有效地防止过拟合;针对数据集稀少的问题,采取随机设置起始帧的位置,提前设定每次读取帧序列的长度,循环操作,在将所有数据均遍历的同时,达到数据增广的目的。该算法在CASME II数据集上的识别率最高达68.85%,在识别率上有一定优势。 展开更多
关键词 微表情识别 深度学习 三维卷积神经网络 批量归一化算法 丢弃法
下载PDF
基于改进Mask R-CNN的输电线路安全检测方法研究
15
作者 王铭晟 《通信电源技术》 2024年第17期219-221,共3页
随着全球电力需求的持续增长和电力网络的不断扩展,输电线路的安全性与稳定性尤为重要。输电线路在连接发电厂和用户的过程中,承担着可靠输送电能的重要职责。为提升输电线路的安全,研究提出一种基于掩膜区域卷积神经网络(Mask Region C... 随着全球电力需求的持续增长和电力网络的不断扩展,输电线路的安全性与稳定性尤为重要。输电线路在连接发电厂和用户的过程中,承担着可靠输送电能的重要职责。为提升输电线路的安全,研究提出一种基于掩膜区域卷积神经网络(Mask Region Convolutional Neural Network,Mask R-CNN)的输电线路安全检测模型,并引入特征金字塔网络(Feature Pyramid Network,FPN)对其进行改进。实验结果表明,在数据集尺寸为500时,改进Mask R-CNN模型的准确率为0.91,损失函数值为0.01。改进的Mask R-CNN模型能够有效提升输电线路缺陷检测的精度,具有较高的实用价值,能够提高电力系统的安全监控水平。 展开更多
关键词 输电线路 安全检测 掩膜区域卷积神经网络(Mask R-cnn) 特征金字塔网络(FPN)
下载PDF
基于改进YOLOv8的风电叶片表面损伤检测与识别方法
16
作者 吴博阳 毛胜轲 +3 位作者 林特宇 任浩杰 蔡海洋 李扬 《机电工程》 CAS 北大核心 2024年第7期1260-1268,共9页
针对风电叶片极易出现损伤和故障,且制造和维护成本高昂等问题,提出了一种基于改进YOLOv8模型的风电叶片表面损伤检测与识别方法。首先,将现场拍摄到的高清叶片图像作为实验数据集,并将其按比例随机划分为训练集、验证集和测试集;然后,... 针对风电叶片极易出现损伤和故障,且制造和维护成本高昂等问题,提出了一种基于改进YOLOv8模型的风电叶片表面损伤检测与识别方法。首先,将现场拍摄到的高清叶片图像作为实验数据集,并将其按比例随机划分为训练集、验证集和测试集;然后,在YOLOv8模型中引入了动态数据增强算法Mosaic、Mixup及离线数据增强算法Albumentations,对训练数据集进行了扩充,解决了模型在有限数据集下的泛化性问题;最后,使用卷积注意力模块(CBAM)和梯度协调机制(GHM)/Focal loss算法等手段加强了模型的损伤检测能力,改进了样本分布不均衡问题,建立了一种先进的风电叶片表面损伤检测与识别方法,提升了YOLOv8模型对叶片损伤的检测精度。研究结果表明:改进后的YOLOv8模型在计算量和参数量都较低的情况下,其平均精度(AP)、平均召回率(AR)都超越了同等配置下的快速区域卷积神经网络(Faster R-CNN)模型。改进后的YOLOv8模型在交并比(IoU)阈值为0.5时的AP和AR分别达到了73.2%和58.8%,验证了该方法在风电叶片损伤检测方面具有一定的可靠性和有效性。 展开更多
关键词 风电叶片损伤识别 YOLOv8 目标检测 数据增强算法 卷积注意力模块 梯度协调机制 平均精度 平均召回率 快速区域卷积神经网络 交并比
下载PDF
基于改进的三向流Faster R-CNN的篡改图像识别 被引量:4
17
作者 徐代 岳璋 +1 位作者 杨文霞 任潇 《计算机应用》 CSCD 北大核心 2020年第5期1315-1321,共7页
为了进一步提高对拼接、缩放旋转、复制粘贴三种主要篡改手段的识别准确率,增强算法普适性,提出了一个基于三向流特征提取的卷积神经网络篡改图像识别系统。首先,分别根据图像局部彩色不变量特性比较特征子块相似度,根据噪声相关性比较... 为了进一步提高对拼接、缩放旋转、复制粘贴三种主要篡改手段的识别准确率,增强算法普适性,提出了一个基于三向流特征提取的卷积神经网络篡改图像识别系统。首先,分别根据图像局部彩色不变量特性比较特征子块相似度,根据噪声相关性比较篡改区域边缘的噪声相关系数,以及根据图像重采样痕迹计算子块标准偏差对比度,完成了对图像RGB流、噪声流和信号流的特征提取;然后,通过多线性池化,结合改进的分段AdaGrad梯度算法,实现了特征降维和参数自适应更新;最后,通过网络训练和分类,完成了对拼接、缩放旋转、复制粘贴这三种主要的图像篡改手段的识别与相应的篡改区域的定位。为衡量所提模型的效果,在VOC2007和CIFAR-10两个数据集上进行了实验。在约9000张图像上的实验结果表明,该模型对拼接、缩放旋转、复制粘贴这三种篡改手段均能进行较准确的识别与定位,识别率分别为0.962、0.956和0.935。与对照文献的双向流特征提取方法相比,该模型的识别率分别提高了1.050%、2.137%、2.860%。三向流特征提取模型丰富了卷积神经网络对图像的特征信息采集,提高了网络的学习性能与识别精度,同时改进的梯度算法通过分段控制参数学习率的下降速度,降低了过拟合,减少了收敛震荡,提高了收降速度,实现了算法的优化设计。 展开更多
关键词 深度学习 篡改图像识别 FASTER R-cnn 三向流特征提取 梯度算法
下载PDF
基于CEEMDAN-小波阈值和3D-CNN的变压器铁心松动故障诊断模型 被引量:4
18
作者 崔佳嘉 马宏忠 《电机与控制应用》 2022年第10期46-52,共7页
为了解决变压器铁心松动故障的识别与诊断,提出基于完全自适应噪声集合经验模态分解(CEEMDAN)-小波阈值的环境噪声去除方法,并提出使用三维卷积神经网络(3D-CNN)去识别基于声纹的变压器铁心松动故障诊断方法。搭建变压器铁心松动故障试... 为了解决变压器铁心松动故障的识别与诊断,提出基于完全自适应噪声集合经验模态分解(CEEMDAN)-小波阈值的环境噪声去除方法,并提出使用三维卷积神经网络(3D-CNN)去识别基于声纹的变压器铁心松动故障诊断方法。搭建变压器铁心松动故障试验平台,采集铁心在不同松动程度下的噪声信号;将采集的用于故障识别的声纹信号经过CEEMDAN-小波阈值算法,利用变压器本体噪声和环境噪声在峭度上的差异滤波,得到信噪比较高的变压器声纹信号;再将滤波后的声纹信号经过短时傅里叶变化生成时频矩阵,并用Mel滤波器降维得到Mel-语谱图,制作成适合3D-CNN输入格式的数据集;搭建好网络的各层,利用3D-CNN对变压器铁心松动故障进行分类和识别。试验结果表明:所提方法在考虑环境噪声的条件下,变压器铁心松动故障的识别率达到90%以上,可用于变压器铁心松动故障的识别和诊断。 展开更多
关键词 变压器 铁心松动故障 声纹信号 故障诊断 三维卷积神经网络
下载PDF
刮板机异常监测系统设计
19
作者 齐健 包国强 +6 位作者 尉维洁 刘峰 高磊 陈廷官 冯化一 吴昊 冯俊 《自动化仪表》 CAS 2024年第8期58-63,共6页
为了实时识别刮板机上的异常小目标,确保刮板机的正常、安全运行,设计了基于机器视觉的刮板机异常监测系统。数据采集层的工业摄像机采集单元基于机器视觉原理获取刮板机实时监测图像,经通用串行总线(USB)接口传输图像给数据处理层。对... 为了实时识别刮板机上的异常小目标,确保刮板机的正常、安全运行,设计了基于机器视觉的刮板机异常监测系统。数据采集层的工业摄像机采集单元基于机器视觉原理获取刮板机实时监测图像,经通用串行总线(USB)接口传输图像给数据处理层。对采集的刮板机图像作降噪、增强处理后,通过数据传输层的基于现场可编程门阵列(FPGA)的以太网通信模块完成图像的上传。数据监测层的异常状态监测模块依据接收到的图像,创新性地调用改进的掩蔽区域卷积神经网络(Mask R-CNN)模型,由异常报警模块发送报警信息,并通过数据显示层呈现异常监测结果及报警提示信息,以实现刮板机异常监测。试验结果表明:该系统处理后的刮板机图像峰值信噪比显著提升、均方根误差显著降低;增强后的刮板机图像异常识别损失更低。该系统可识别刮板机不同类型的异常,并标记异常目标。 展开更多
关键词 机器视觉 刮板机 异常监测 图像异常 现场可编程门阵列 掩蔽区域卷积神经网络模型
下载PDF
基于双路射频指纹卷积神经网络与特征融合的雷达辐射源个体识别
20
作者 肖易寒 王博煜 +1 位作者 于祥祯 蒋伊琳 《电子与信息学报》 EI CAS CSCD 北大核心 2024年第8期3238-3245,共8页
为实现雷达辐射源个体识别不受信号参数、调制方式的影响,该文提出基于双路射频指纹卷积神经网络(Dual RFF-CNN2)和特征融合的雷达辐射源个体识别方法。首先从接收的射频信号中提取原始I/Q(Raw-I/Q)信号;其次分别对Raw-I/Q两路信号进行... 为实现雷达辐射源个体识别不受信号参数、调制方式的影响,该文提出基于双路射频指纹卷积神经网络(Dual RFF-CNN2)和特征融合的雷达辐射源个体识别方法。首先从接收的射频信号中提取原始I/Q(Raw-I/Q)信号;其次分别对Raw-I/Q两路信号进行轴向积分双谱(AIB)和围线积分双谱(SIB)降维以构建双谱积分矩阵;最后将Raw-I/Q信号及双谱积分矩阵共同送入Dual RFF-CNN2网络并进行特征融合以实现雷达辐射源个体识别。实验结果表明,该方法具有较高的识别准确率,提取的“指纹特征”具备稳定性、鲁棒性。 展开更多
关键词 雷达辐射源个体识别 双路射频指纹卷积神经网络 特征融合 指纹特征 原始I/Q信号
下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部