In the microwave 199Hg+ trapped-ion clock, the frequency instability degradation caused by the Dick effect is un- avoidable because of the periodical interrogating field. In this paper, the general expression of the ...In the microwave 199Hg+ trapped-ion clock, the frequency instability degradation caused by the Dick effect is un- avoidable because of the periodical interrogating field. In this paper, the general expression of the sensitivity function g(t) to the frequency fluctuation of the interrogating field with Nπ-pulse (N is odd) is derived. According to the measured phase noise of the 40.5-GHz microwave synthesizer, the Dick-effect limited Allan deviation of our 199Hg+ trapped-ion clock is worked out. The results indicate that the limited Allan deviations are about 1.75 ×10-13/√τ and 3.03 ×10-13/√τ respectively in the linear ion trap and in the two-segment extended linear ion trap under our present experimental parameters.展开更多
The present paper covers the 199 Hg NMR chemical shifts of 24 substituted diphenylmercurials and phenyl(2-benzothiazolylthio)mercurials. There is a good linear relationship between the chemical shift and the Hammett c...The present paper covers the 199 Hg NMR chemical shifts of 24 substituted diphenylmercurials and phenyl(2-benzothiazolylthio)mercurials. There is a good linear relationship between the chemical shift and the Hammett constant of the substituents for both series of compounds, and electron donating substituents cause the chemical shift towards downfield.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11074248 and 11474320)
文摘In the microwave 199Hg+ trapped-ion clock, the frequency instability degradation caused by the Dick effect is un- avoidable because of the periodical interrogating field. In this paper, the general expression of the sensitivity function g(t) to the frequency fluctuation of the interrogating field with Nπ-pulse (N is odd) is derived. According to the measured phase noise of the 40.5-GHz microwave synthesizer, the Dick-effect limited Allan deviation of our 199Hg+ trapped-ion clock is worked out. The results indicate that the limited Allan deviations are about 1.75 ×10-13/√τ and 3.03 ×10-13/√τ respectively in the linear ion trap and in the two-segment extended linear ion trap under our present experimental parameters.
文摘The present paper covers the 199 Hg NMR chemical shifts of 24 substituted diphenylmercurials and phenyl(2-benzothiazolylthio)mercurials. There is a good linear relationship between the chemical shift and the Hammett constant of the substituents for both series of compounds, and electron donating substituents cause the chemical shift towards downfield.