The humic acids (HAs) isolated from the sediments of the various rivers,lakes,and reservoirs in China were studied using elemental analyzer,fourier transform infrared (FT-IR),and CP/MAS 13C nuclear magnetic resonance ...The humic acids (HAs) isolated from the sediments of the various rivers,lakes,and reservoirs in China were studied using elemental analyzer,fourier transform infrared (FT-IR),and CP/MAS 13C nuclear magnetic resonance (NMR) spectroscopy.The results showed that the HAs were characterized by some common chemical and physicochemical properties,but they also pose some differences in the C-containing functional groups.The C/N,C/H,O/C,and O/H ratios differ widely for the various HAs,showing that the elemental comp...展开更多
Grazing can modulate the feedback between vegetation and soil nutrient dynamics(carbon and nitrogen),altering the cycles of these elements in grassland ecosystems.For clarifying the impact of grazing on the C and N ...Grazing can modulate the feedback between vegetation and soil nutrient dynamics(carbon and nitrogen),altering the cycles of these elements in grassland ecosystems.For clarifying the impact of grazing on the C and N in plants and soils in the desert grassland of Ningxia,China,we examined the plant biomass,SOC(soil organic carbon),total soil N and stable isotope signatures of plants and soils from both the grazed and ungrazed sites.Significantly lower aboveground biomass,root biomass,litter biomass and vegetation coverage were found in the grazed site compared to the ungrazed site,with decreases of 42.0%,16.2%,59.4% and 30.0%,respectively.The effects of grazing on plant carbon,nitrogen,?15N and ?13C values were uniform among species.The levels of plant carbon and nitrogen in grasses were greater than those in the forbs(except for the carbon of Cynanchum komarovii and Euphorbia esula).Root 15 N and 13 C values increased with grazing,while the responses of root carbon and nitrogen to grazing showed no consistent patterns.Root 15 N and 13 C were increased by 79.0% and 22.4% in the grazed site compared to the ungrazed site,respectively.The values of SOC and total N were significantly lower in the grazed than in the ungrazed sites for all sampling depths(0–10 and 10–20 cm),and values of SOC and total N at the surface(0–10 cm) were lower than those in the deeper soils(10–20 cm).Soil ?15N values were not affected by grazing at any sampling depth,whereas soil ?13C values were significantly affected by grazing and increased by 19.3% and 8.6% in the soils at 0–10 and 10–20 cm,respectively.The soil ?13C values(–8.3‰ to –6.7‰) were higher than those for roots(–20.2‰ to –15.6‰) and plant tissues(–27.9‰ to –13.3‰).Our study suggests that grazing could greatly affect soil organic carbon and nitrogen in contrast to ungrazed grassland and that grazing appears to exert a negative effect on soil carbon and nitrogen in desert grassland.展开更多
From July 2008 to August 2008, 72 leaf samples from 22 species and 81 soil samples in the nine natural forest ecosystems were collected, from north to south along the North-South Transect of Eastern China (NSTEC). B...From July 2008 to August 2008, 72 leaf samples from 22 species and 81 soil samples in the nine natural forest ecosystems were collected, from north to south along the North-South Transect of Eastern China (NSTEC). Based on these samples, we studied the geographical distribution patterns of vegetable water use efficiency (WUE) and nitrogen use efficiency (NUE), and analyzed their relationship with environmental factors. The vegetable WUE and NUE were calculated through the measurement of foliar δ 13C and C/N of predominant species, respectively. The results showed: (1) vegetable WUE, ranging from 2.13 to 28.67 mg C g-1 H2O, increased linearly from south to north in the representative forest ecosystems along the NSTEC, while vegetable NUE showed an opposite trend, increasing from north to south, ranging from 12.92 to 29.60 g C g-1 N. (2) Vegetable WUE and NUE were dominantly driven by climate and significantly affected by soil nutrient factors. Based on multiple stepwise regression analysis, mean annual temperature, soil phosphorus concentration, and soil nitrogen concentration were responding for 75.5% of the variations of WUE (p0.001). While, mean annual precipitation and soil phosphorus concentration could explain 65.7% of the change in vegetable NUE (p0.001). Moreover, vegetable WUE and NUE would also be seriously influenced by atmospheric nitrogen deposition in nitrogen saturated ecosystems. (3) There was a significant trade-off relationship between vegetable WUE and NUE in the typical forest ecosystems along the NSTEC (p0.001), indicating a balanced strategy for vegetation in resource utilization in natural forest ecosystems along the NSTEC. This study suggests that global change would impact the resource use efficiency of forest ecosystems. However, vegetation could adapt to those changes by increasing the use efficiency of shortage resource while decreasing the relatively ample one. But extreme impacts, such as heavy nitrogen deposition, would break this trade-off mech展开更多
We present a record on carbon stable isotopic composition (δ 13C), covering 75 through 10 thousands years ago (ka B.P.), from Hulu Cave, Nanjing. The overlapping δ 13C pro-files are very similar in pattern and range...We present a record on carbon stable isotopic composition (δ 13C), covering 75 through 10 thousands years ago (ka B.P.), from Hulu Cave, Nanjing. The overlapping δ 13C pro-files are very similar in pattern and range, indicating that they mainly record climatic signal. Dur-ing the last glacial-interglacial transition, the >6‰ change of δ 13C values implies different con-tributions of C3 vs. C4 type plants in soils. On millennial scale, however, the increased calcite δ 13C during the warm Dansgaard-Oeschger (DO) events suggests a decrease of dissolved bio-genic CO2 when water flux rate through soil is large. This correlation between heavier δ 13C and higher precipitation is consistent with our previous report on the samples’ stable oxygen isotope records (Wang et al., 2001). Comparison of coeval δ 13C and δ 18O of stalagmites indicates that kinetic fractionation of carbon isotope is closely related to growth rate of stalagmites. This study also shows that local vegetation changes may lag behind precipitation changes by ~700 years during the deglaciation.展开更多
Gastroparesis(Gp)is a chronic disease characterized by a delayed gastric emptying in the absence of mechanical obstruction.Although this condition has been reported in the literature since the mid-1900s,only recently ...Gastroparesis(Gp)is a chronic disease characterized by a delayed gastric emptying in the absence of mechanical obstruction.Although this condition has been reported in the literature since the mid-1900s,only recently has there been renewed clinical and scientific interest in this disease,which has a potentially great impact on the quality of life.The aim of this review is to explore the pathophysiological,diagnostic and therapeutical aspects of Gp according to the most recent evidence.A comprehensive online search for Gp was carried out using MEDLINE and EMBASE.Gp is the result of neuromuscular abnormalities of the gastric motor function.There is evidence that patients with idiopathic and diabetic Gp may display a reduction in nitrergic inhibitory neurons and in interstitial cells of Cajal and/or telocytes.As regards diagnostic approach,99-Technetium scintigraphy is currently considered to be the gold standard for Gp.Its limits are a lack of standardization and a mild risk of radiation exposure.The C13 breath testing is a valid and safe alternative method.13C acid octanoic and the 13C Spirulina platensis recently approved by the Food and Drug Administration are the most commonly used diagnostic kits.The wireless motility capsule is a promising technique,but its use is limited by costs and scarce availability in many countries.Finally,therapeutic strategies are related to the clinical severity of Gp.In mild and moderate Gp,dietary modification and prokinetic agents are generally sufficient.Metoclopramide is the only drug approved by the Food and Drug Administration for Gp.However,other older and new prokinetics and antiemetics can be considered.As a second-line therapy,tricyclic antidepressants and cannabinoids have been proposed.In severe cases the normal nutritional approach can be compromised and artificial nutrition may be needed.In drug-unresponsive Gp patients some alternative strategies(endoscopic,electric stimulation or surgery)are available.展开更多
基金the National Basic Research Program (973) of China (No.2004CB418502,2003CB415002)the National Natural Science Foundation of China (No.29977002).
文摘The humic acids (HAs) isolated from the sediments of the various rivers,lakes,and reservoirs in China were studied using elemental analyzer,fourier transform infrared (FT-IR),and CP/MAS 13C nuclear magnetic resonance (NMR) spectroscopy.The results showed that the HAs were characterized by some common chemical and physicochemical properties,but they also pose some differences in the C-containing functional groups.The C/N,C/H,O/C,and O/H ratios differ widely for the various HAs,showing that the elemental comp...
基金financially supported by the National Natural Science Foundation of China (31260125,31000214)
文摘Grazing can modulate the feedback between vegetation and soil nutrient dynamics(carbon and nitrogen),altering the cycles of these elements in grassland ecosystems.For clarifying the impact of grazing on the C and N in plants and soils in the desert grassland of Ningxia,China,we examined the plant biomass,SOC(soil organic carbon),total soil N and stable isotope signatures of plants and soils from both the grazed and ungrazed sites.Significantly lower aboveground biomass,root biomass,litter biomass and vegetation coverage were found in the grazed site compared to the ungrazed site,with decreases of 42.0%,16.2%,59.4% and 30.0%,respectively.The effects of grazing on plant carbon,nitrogen,?15N and ?13C values were uniform among species.The levels of plant carbon and nitrogen in grasses were greater than those in the forbs(except for the carbon of Cynanchum komarovii and Euphorbia esula).Root 15 N and 13 C values increased with grazing,while the responses of root carbon and nitrogen to grazing showed no consistent patterns.Root 15 N and 13 C were increased by 79.0% and 22.4% in the grazed site compared to the ungrazed site,respectively.The values of SOC and total N were significantly lower in the grazed than in the ungrazed sites for all sampling depths(0–10 and 10–20 cm),and values of SOC and total N at the surface(0–10 cm) were lower than those in the deeper soils(10–20 cm).Soil ?15N values were not affected by grazing at any sampling depth,whereas soil ?13C values were significantly affected by grazing and increased by 19.3% and 8.6% in the soils at 0–10 and 10–20 cm,respectively.The soil ?13C values(–8.3‰ to –6.7‰) were higher than those for roots(–20.2‰ to –15.6‰) and plant tissues(–27.9‰ to –13.3‰).Our study suggests that grazing could greatly affect soil organic carbon and nitrogen in contrast to ungrazed grassland and that grazing appears to exert a negative effect on soil carbon and nitrogen in desert grassland.
基金National Natural Science Foundation of China No.30590381 No.31000211 National Basic Research Program of China No.2010CB833504
文摘From July 2008 to August 2008, 72 leaf samples from 22 species and 81 soil samples in the nine natural forest ecosystems were collected, from north to south along the North-South Transect of Eastern China (NSTEC). Based on these samples, we studied the geographical distribution patterns of vegetable water use efficiency (WUE) and nitrogen use efficiency (NUE), and analyzed their relationship with environmental factors. The vegetable WUE and NUE were calculated through the measurement of foliar δ 13C and C/N of predominant species, respectively. The results showed: (1) vegetable WUE, ranging from 2.13 to 28.67 mg C g-1 H2O, increased linearly from south to north in the representative forest ecosystems along the NSTEC, while vegetable NUE showed an opposite trend, increasing from north to south, ranging from 12.92 to 29.60 g C g-1 N. (2) Vegetable WUE and NUE were dominantly driven by climate and significantly affected by soil nutrient factors. Based on multiple stepwise regression analysis, mean annual temperature, soil phosphorus concentration, and soil nitrogen concentration were responding for 75.5% of the variations of WUE (p0.001). While, mean annual precipitation and soil phosphorus concentration could explain 65.7% of the change in vegetable NUE (p0.001). Moreover, vegetable WUE and NUE would also be seriously influenced by atmospheric nitrogen deposition in nitrogen saturated ecosystems. (3) There was a significant trade-off relationship between vegetable WUE and NUE in the typical forest ecosystems along the NSTEC (p0.001), indicating a balanced strategy for vegetation in resource utilization in natural forest ecosystems along the NSTEC. This study suggests that global change would impact the resource use efficiency of forest ecosystems. However, vegetation could adapt to those changes by increasing the use efficiency of shortage resource while decreasing the relatively ample one. But extreme impacts, such as heavy nitrogen deposition, would break this trade-off mech
文摘We present a record on carbon stable isotopic composition (δ 13C), covering 75 through 10 thousands years ago (ka B.P.), from Hulu Cave, Nanjing. The overlapping δ 13C pro-files are very similar in pattern and range, indicating that they mainly record climatic signal. Dur-ing the last glacial-interglacial transition, the >6‰ change of δ 13C values implies different con-tributions of C3 vs. C4 type plants in soils. On millennial scale, however, the increased calcite δ 13C during the warm Dansgaard-Oeschger (DO) events suggests a decrease of dissolved bio-genic CO2 when water flux rate through soil is large. This correlation between heavier δ 13C and higher precipitation is consistent with our previous report on the samples’ stable oxygen isotope records (Wang et al., 2001). Comparison of coeval δ 13C and δ 18O of stalagmites indicates that kinetic fractionation of carbon isotope is closely related to growth rate of stalagmites. This study also shows that local vegetation changes may lag behind precipitation changes by ~700 years during the deglaciation.
文摘Gastroparesis(Gp)is a chronic disease characterized by a delayed gastric emptying in the absence of mechanical obstruction.Although this condition has been reported in the literature since the mid-1900s,only recently has there been renewed clinical and scientific interest in this disease,which has a potentially great impact on the quality of life.The aim of this review is to explore the pathophysiological,diagnostic and therapeutical aspects of Gp according to the most recent evidence.A comprehensive online search for Gp was carried out using MEDLINE and EMBASE.Gp is the result of neuromuscular abnormalities of the gastric motor function.There is evidence that patients with idiopathic and diabetic Gp may display a reduction in nitrergic inhibitory neurons and in interstitial cells of Cajal and/or telocytes.As regards diagnostic approach,99-Technetium scintigraphy is currently considered to be the gold standard for Gp.Its limits are a lack of standardization and a mild risk of radiation exposure.The C13 breath testing is a valid and safe alternative method.13C acid octanoic and the 13C Spirulina platensis recently approved by the Food and Drug Administration are the most commonly used diagnostic kits.The wireless motility capsule is a promising technique,but its use is limited by costs and scarce availability in many countries.Finally,therapeutic strategies are related to the clinical severity of Gp.In mild and moderate Gp,dietary modification and prokinetic agents are generally sufficient.Metoclopramide is the only drug approved by the Food and Drug Administration for Gp.However,other older and new prokinetics and antiemetics can be considered.As a second-line therapy,tricyclic antidepressants and cannabinoids have been proposed.In severe cases the normal nutritional approach can be compromised and artificial nutrition may be needed.In drug-unresponsive Gp patients some alternative strategies(endoscopic,electric stimulation or surgery)are available.