T122 steel has been used to produce superheater or reheater of ultra supercritical boilers. With the help of chemical phase extraction and mierostructure characterization, the performance of aging precipitates of T122...T122 steel has been used to produce superheater or reheater of ultra supercritical boilers. With the help of chemical phase extraction and mierostructure characterization, the performance of aging precipitates of T122 steel, such as M23C6 carbide, Laves phase and MX phase was investigated, the strengthening mechanism of the steel was discussed, and the thermal yield stress of lath substructure, dislocations and precipitates of the steel were calculated. It was found that lath substructure and dislocations dominated the strengthening attribution and precipitation hardening went second to the strengthening attribution.展开更多
Based on dislocation reaction theory and Avrami equation, a constitutive equation model was developed to describe dynamic recovery and dynamic recrystallization during hot deformation of T122 heat resistant steel, whi...Based on dislocation reaction theory and Avrami equation, a constitutive equation model was developed to describe dynamic recovery and dynamic recrystallization during hot deformation of T122 heat resistant steel, which have taken the effect of dynamic strain aging into account. Uniaxial hot compression test had been carried out over a wide range of strain rate (0.01 to 10 s-1 ) and temperature (900 to 1 200 ~C) with the help of Gleeble 3500. Obtained experimental data was applied to determine the material parameters in proposed constitutive equations of T122 steel, by using the non-linear least square regress optimization method. The calculated constitutive equations are quantita- tively in good agreement with experimentally measured curves and microstructure observation. It shows that propose constitutive equation T122 steel is able to be used to predict flow stress of T122 steel during hot deformation in aus- tenite temperature scope.展开更多
The layered 122 Zintl compounds have become an intriguing class of thermoelectric materials due to the promising electronic transport properties and inherently low thermal conductivity,showing the typical characterist...The layered 122 Zintl compounds have become an intriguing class of thermoelectric materials due to the promising electronic transport properties and inherently low thermal conductivity,showing the typical characteristics of"phonon-glass electron-crystal".Owing to the unprecedented performance tunability,the thermoelectric properties of the layered-structure compounds are completive with some traditional thermoelectric materials.Point defects involving vacancy,aliovalent doping and equivalent alloying atoms have been introduced to further enhance the thermoelectric properties.This review emphasizes the effects of various point defects on the thermoelectric parameters,and provides perspective on the strategies for increasing the thermoelectric figure of merit zT,which are believed to be applicable for improving the thermoelectric properties of many other compounds.展开更多
The MYB34, MYB51, and MYB122 transcription factors are known to regulate indolic glucosinolate (IG) biosynthesis in Arabidopsis thaliana. To determine the distinct regulatory potential of MYB34, MYB51, and MYB122, t...The MYB34, MYB51, and MYB122 transcription factors are known to regulate indolic glucosinolate (IG) biosynthesis in Arabidopsis thaliana. To determine the distinct regulatory potential of MYB34, MYB51, and MYB122, the accumulation of IGs in different parts of plants and upon treatment with plant hormones were analyzed in A. thaliana seedlings. It was shown that MYB34, MYB51, and MYB122 act together to control the biosynthesis of 13M in shoots and roots, with MYB34 controlling biosynthesis of IGs mainly in the roots, MYB51 regulating biosynthesis in shoots, and MYB122 having an accessory role in the biosynthesis of IGs. Analysis of glucosinolate levels in seedlings of myb34, myb51, myb122, myb34 myb51 double, and myb34 myb51 myb122 triple knockout mutants grown in the presence of abscisic acid (ABA), salicylic acid (SA), jasmonate (JA), or ethylene (ET) revealed that: (1) MYB51 is the central regulator of IG synthesis upon SA and ET signaling, (2) MYB34 is the key regulator upon ABA and JA signaling, and (3) MYB122 plays only a minor role in JA/ET-induced glucosinolate biosynthesis. The myb34 myb51 myb122 triple mutant is devoid of IGs, indicating that these three MYB factors are indispensable for IG production under standard growth conditions.展开更多
基金Item Sponsored by National Hi-Tech Research and Development Program of China (863 program) (2006AA03Z513)
文摘T122 steel has been used to produce superheater or reheater of ultra supercritical boilers. With the help of chemical phase extraction and mierostructure characterization, the performance of aging precipitates of T122 steel, such as M23C6 carbide, Laves phase and MX phase was investigated, the strengthening mechanism of the steel was discussed, and the thermal yield stress of lath substructure, dislocations and precipitates of the steel were calculated. It was found that lath substructure and dislocations dominated the strengthening attribution and precipitation hardening went second to the strengthening attribution.
基金Sponsored by National High-Tech Research and Development Program (863Program) of China (2003AA331060)
文摘Based on dislocation reaction theory and Avrami equation, a constitutive equation model was developed to describe dynamic recovery and dynamic recrystallization during hot deformation of T122 heat resistant steel, which have taken the effect of dynamic strain aging into account. Uniaxial hot compression test had been carried out over a wide range of strain rate (0.01 to 10 s-1 ) and temperature (900 to 1 200 ~C) with the help of Gleeble 3500. Obtained experimental data was applied to determine the material parameters in proposed constitutive equations of T122 steel, by using the non-linear least square regress optimization method. The calculated constitutive equations are quantita- tively in good agreement with experimentally measured curves and microstructure observation. It shows that propose constitutive equation T122 steel is able to be used to predict flow stress of T122 steel during hot deformation in aus- tenite temperature scope.
基金Supported by the National Key Research and Development Program of China(2018YFA0702100)the National Natural Science Foundation of China(21771123,51772186 and 51632005)the Program of Introducing Talents of Discipline to Universities(D16002)。
文摘The layered 122 Zintl compounds have become an intriguing class of thermoelectric materials due to the promising electronic transport properties and inherently low thermal conductivity,showing the typical characteristics of"phonon-glass electron-crystal".Owing to the unprecedented performance tunability,the thermoelectric properties of the layered-structure compounds are completive with some traditional thermoelectric materials.Point defects involving vacancy,aliovalent doping and equivalent alloying atoms have been introduced to further enhance the thermoelectric properties.This review emphasizes the effects of various point defects on the thermoelectric parameters,and provides perspective on the strategies for increasing the thermoelectric figure of merit zT,which are believed to be applicable for improving the thermoelectric properties of many other compounds.
文摘The MYB34, MYB51, and MYB122 transcription factors are known to regulate indolic glucosinolate (IG) biosynthesis in Arabidopsis thaliana. To determine the distinct regulatory potential of MYB34, MYB51, and MYB122, the accumulation of IGs in different parts of plants and upon treatment with plant hormones were analyzed in A. thaliana seedlings. It was shown that MYB34, MYB51, and MYB122 act together to control the biosynthesis of 13M in shoots and roots, with MYB34 controlling biosynthesis of IGs mainly in the roots, MYB51 regulating biosynthesis in shoots, and MYB122 having an accessory role in the biosynthesis of IGs. Analysis of glucosinolate levels in seedlings of myb34, myb51, myb122, myb34 myb51 double, and myb34 myb51 myb122 triple knockout mutants grown in the presence of abscisic acid (ABA), salicylic acid (SA), jasmonate (JA), or ethylene (ET) revealed that: (1) MYB51 is the central regulator of IG synthesis upon SA and ET signaling, (2) MYB34 is the key regulator upon ABA and JA signaling, and (3) MYB122 plays only a minor role in JA/ET-induced glucosinolate biosynthesis. The myb34 myb51 myb122 triple mutant is devoid of IGs, indicating that these three MYB factors are indispensable for IG production under standard growth conditions.