A series of highly Er^(3+)/Yb^(3+) co-doped fluoroaluminate glasses were investigated in order to develop a microchip laser at 1.54 μm under 980 nm excitation. Measurements of absorption, emission and up-conversion s...A series of highly Er^(3+)/Yb^(3+) co-doped fluoroaluminate glasses were investigated in order to develop a microchip laser at 1.54 μm under 980 nm excitation. Measurements of absorption, emission and up-conversion spectra were performed to examine the effect of concentration quenching on spectroscopic properties. In the glasses with Er^(3+) concentrations below 10% (mol fraction), concentration quenching is low and the Er^(3+)/Yb^(3+) co-doped fluoroaluminate glasses gave stronger fluorescence of 1.54 μm from the (()~4I_(13/2))→(()~4I_(15/2)) transition than those of Er^(3+) singly-doped glasses. In the glass with Er^(3+) concentrations above 10%, concentration quenching of 1.54 μm obviously occurs more than that of the Er^(3+) singly-doped samples because of the back energy-transfer from Er^(3+) to Yb^(3+). To obtain the highest emission efficiency at 1.54 μm, the optimum doping-concentration ratio of Er^(3+)/Yb^(3+) is found to be approximately 1∶1 in mol fraction when the Er^(3+) concentration is less than 10%.展开更多
文摘A series of highly Er^(3+)/Yb^(3+) co-doped fluoroaluminate glasses were investigated in order to develop a microchip laser at 1.54 μm under 980 nm excitation. Measurements of absorption, emission and up-conversion spectra were performed to examine the effect of concentration quenching on spectroscopic properties. In the glasses with Er^(3+) concentrations below 10% (mol fraction), concentration quenching is low and the Er^(3+)/Yb^(3+) co-doped fluoroaluminate glasses gave stronger fluorescence of 1.54 μm from the (()~4I_(13/2))→(()~4I_(15/2)) transition than those of Er^(3+) singly-doped glasses. In the glass with Er^(3+) concentrations above 10%, concentration quenching of 1.54 μm obviously occurs more than that of the Er^(3+) singly-doped samples because of the back energy-transfer from Er^(3+) to Yb^(3+). To obtain the highest emission efficiency at 1.54 μm, the optimum doping-concentration ratio of Er^(3+)/Yb^(3+) is found to be approximately 1∶1 in mol fraction when the Er^(3+) concentration is less than 10%.