In this paper we study the convergence of adaptive finite element methods for the gen- eral non-attine equivalent quadrilateral and hexahedral elements on 1-irregular meshes with hanging nodes. Based on several basic ...In this paper we study the convergence of adaptive finite element methods for the gen- eral non-attine equivalent quadrilateral and hexahedral elements on 1-irregular meshes with hanging nodes. Based on several basic ingredients, such as quasi-orthogonality, estimator reduction and D6fler marking strategy, convergence of the adaptive finite element methods for the general second-order elliptic partial equations is proved. Our analysis is effective for all conforming Qm elements which covers both the two- and three-dimensional cases in a unified fashion.展开更多
基金supported by the Special Funds for Major State Basic Research Project (No. 2005CB321701)
文摘In this paper we study the convergence of adaptive finite element methods for the gen- eral non-attine equivalent quadrilateral and hexahedral elements on 1-irregular meshes with hanging nodes. Based on several basic ingredients, such as quasi-orthogonality, estimator reduction and D6fler marking strategy, convergence of the adaptive finite element methods for the general second-order elliptic partial equations is proved. Our analysis is effective for all conforming Qm elements which covers both the two- and three-dimensional cases in a unified fashion.