Objective: To study the influence of glycyrrhetinic acid(GA) on bronchial asthma(BA)smooth muscle proliferation and apoptosis as well as inflammatory factor expression and its molecular mechanism.Methods: Male SD guin...Objective: To study the influence of glycyrrhetinic acid(GA) on bronchial asthma(BA)smooth muscle proliferation and apoptosis as well as inflammatory factor expression and its molecular mechanism.Methods: Male SD guinea pigs were selected and made into asthma models, bronchial asthma smooth muscle cells were cultured and divided into BA group, GA group and GA + LM group that were treated with serum-free RPMI1640 culture medium, serumfree RPMI1640 culture medium containing 50 ng/mL glycyrrhetinic acid, serum-free RPMI1640 culture medium containing 50 ng/mL glycyrrhetinic acid and 100 ng/mL LM22B-10 respectively; normal guinea pigs were collected and bronchial smooth muscle cells were cultured as control group. The cell proliferation activity as well as the expression of proliferation and apoptosis genes, inflammatory factors and p-ERK1/2 was determined.Results: Proliferation activity value and m RNA expression of Bcl-2, TNF-α, IL-4, IL-6,YKL-40, protein expression of p-ERK1/2 of airway smooth muscle cell in BA group were significantly higher than those of control group while m RNA expression levels of Bax,caspase-9 as well as caspase-3 were significantly lower than that of control group(P < 0.05); proliferation activity value and m RNA expression of Bcl-2, TNF-α, IL-4, IL-6, YKL-40, protein expression of p-ERK1/2 of airway smooth muscle cell in GA group were significantly lower than those of BA group(P < 0.05) while the m RNA expression levels of Bax, caspase-9 as well as caspase-3 were significantly higher than those of BA group(P < 0.05); proliferation activity value and m RNA expression of Bcl-2, TNF-α, IL-4, IL-6, YKL-40 of airway smooth muscle cell in GA + LM group were significantly higher than those of GA group(P < 0.05) while m RNA expression levels of Bax, caspase-9 as well as caspase-3 were significantly lower that of GA group(P < 0.05).Conclusion: GA can inhibit the proliferation of bronchial smooth muscle cells and reduce the expression of inflammatory factors by inhibiting the phosphorylation of ER展开更多
Objective: To analyze the effects of salvianolate on myocardial infarction in a murine in vivo model of ischemia and reperfusion (I/R) injury. Metheds: Myocardial I/R injury model was constructed in mice by 30 min...Objective: To analyze the effects of salvianolate on myocardial infarction in a murine in vivo model of ischemia and reperfusion (I/R) injury. Metheds: Myocardial I/R injury model was constructed in mice by 30 min of coronary occlusion followed by 24 h of reperfusion and pretreated with salvianolate 30 min before I/R (SAL group). The SAL group was compared with SHAM (no I/R and no salvianolate), I/R (no salvianolate), and ischemia preconditioning (IPC) groups. Furthermore, an ERK1/2 inhibitor PD98059 (1 mg/kg), and a phosphatidylinositol-3-kinase (PI3-K) inhibitor, LY294002 (7.5 mg/kg), were administered intraperitoneal injection (i.p) for 30 min prior to salvianolate, followed by I/R surgery in LY and PD groups. By using a double staining method, the ratio of the infarct size (IS) to left ventricle (LV) and of risk region (RR) to LV were compared among the groups. Correlations between IS and RR were analyzed. Western-blot was used to detect the extracellular signal-regulated kinase 1/2 (ERK1/2) and protein kinase B (AKT) phosphorylation changes. Results: There were no significant differences between RR to LV ratio among the SHAM, I/R, IPC and SAL groups (P〉0.05). The SAL and IPC groups had IS of 26.1% ± 1.4% and 22.3% ±2.9% of RR, respectively, both of which were significantly smaller than the I/R group (38.5% ± 2.9% of RR, P〈0.05, P〈0.01, respectively). Moreover, the phosphorylation of ERK1/2 was increased in SAL group (P〈0.05), while AKT had no significant change. LY294002 further reduced IS, whereas the protective role of salvianolate could be attenuated by PD98059, which increased the IS. Additionally, the IS was not linearly related to the RR (r=0.23, 0.45, 0.62, 0.17, and 0.52 in the SHAM, I/R, SAL, LY and PD groups, respectively). Conclusion: Salvianolate could reduce myocardial I/R injury in mice in vivo, which involves an ERK1/2 pathway, but not a PI3-K signaling pathway.展开更多
Objective To investigate the signaling pathway through testing the effects of dexamethasone (Dex) on the activation of the extracellular signal-regulated protein kinase 1/2 (ERK1/2) and p38 kinase (p38) in HO-8910...Objective To investigate the signaling pathway through testing the effects of dexamethasone (Dex) on the activation of the extracellular signal-regulated protein kinase 1/2 (ERK1/2) and p38 kinase (p38) in HO-8910 cells.Methods Activation of the ERK1/2 and p38 was detected by Western blotting using the antibodies against the total ERK1/2 and p38 mitogen-activated protein kinases (MAPKs) protein and the phosphorylated forms of them. Results Dex could suppress the activation of ERK1/2, while enhance the activation of p38 rapidly and strongly in a dose- and time- dependent manner. Neither effect could be blocked by RU486, the antagonist of glucocorticoid receptor (GR).Conclusion Dex has rapid effects on the activation of ERK1/2 and p38, and these effects are not mediated by GR.展开更多
The mitogen-activated protein kinase(MAPK)/extracellular signal-regulated kinase 1/2(ERK1/2) signaling pathway is widely activated by a variety of extracellular stimuli, and its dysregulation is associated with the pr...The mitogen-activated protein kinase(MAPK)/extracellular signal-regulated kinase 1/2(ERK1/2) signaling pathway is widely activated by a variety of extracellular stimuli, and its dysregulation is associated with the proliferation, invasion, and migration of cancer cells. ERK1/2 is located at the distal end of this pathway and rarely undergoes mutations, making it an attractive target for anticancer drug development. Currently, an increasing number of ERK1/2 inhibitors have been designed and synthesized for antitumor therapy, among which representative compounds have entered clinical trials. When ERK1/2 signal transduction is eliminated, ERK5 may provide a bypass route to rescue proliferation, and weaken the potency of ERK1/2 inhibitors. Therefore, drug research targeting ERK5 or based on the compensatory mechanism of ERK5 for ERK1/2 opens up a new way for oncotherapy. This review provides an overview of the physiological and biological functions of ERKs, focuses on the structure-activity relationships of small molecule inhibitors targeting ERKs, with a view to providing guidance for future drug design and optimization, and discusses the potential therapeutic strategies to overcome drug resistance.展开更多
AIM: To investigate the association between endogenous hydrogen sulfide (H<sub>2</sub>S) and portal hypertension as well as its effect on vascular smooth muscle cells.
In a recent manuscript published in Cell,Liang et al.discovered novel ferroptosis regulators,membrane-bound O-acyltransferase domain-containing 1 and 2(MBOAT1/2).1 These findings may have implications for ferroptosis-...In a recent manuscript published in Cell,Liang et al.discovered novel ferroptosis regulators,membrane-bound O-acyltransferase domain-containing 1 and 2(MBOAT1/2).1 These findings may have implications for ferroptosis-based cancer therapy.展开更多
Background C-Jun N-terminal kinase (JNK) signaling pathway plays a critical role in cerebral ischemia. Although the mechanistic basis for this activation of JNK1/2 is uncertain, oxidative stress may play a role. The...Background C-Jun N-terminal kinase (JNK) signaling pathway plays a critical role in cerebral ischemia. Although the mechanistic basis for this activation of JNK1/2 is uncertain, oxidative stress may play a role. The purpose of this study was to investigate whether the activation of JNK1/2 is associated with the production of endogenous nitric oxide (NO). Methods Ischemia and reperfusion (I/R) was induced by cerebral four-vessel occlusion. Sprague-Dawley (SD) rats were divided into 6 groups: sham group, I/R group, neuronal nitric oxide synthase (nNOS) inhibitor (7-nitroindazole, 7-NI) given group, inducible nitric oxide synthase (iNOS) inhibitor (2-amino-5,6-dihydro-methylthiazine, AMT) given group, sodium chloride control group, and 1% dimethyl sulfoxide (DMSO) control group. The levels of protein expression and phospho-JNK1/2 were detected by Western blotting and the survival hippocampus neurons in CA1 zone were observed by cresyl violet staining. Results The study illustrated two peaks of JNK1/2 activation occurred at 30 minutes and 3 days during reperfusion. 7-NI inhibited JNK1/2 activation during the early reperfusion, whereas AMT preferably attenuated JNK1/2 activation during the later reperfusion. Administration of 7-NI and AMT can decrease I/R-induced neuronal loss in hippocampal CA1 region. Conclusion JNK1/2 activation is associated with endogenous NO in response to ischemic insult.展开更多
Nogo-A is considered one of the most important inhibitors of myelin-associated axonal regeneration in the central nervous system.It is mainly expressed by oligodendrocytes.Although previous studies have found regulato...Nogo-A is considered one of the most important inhibitors of myelin-associated axonal regeneration in the central nervous system.It is mainly expressed by oligodendrocytes.Although previous studies have found regulatory roles for Nogo-A in neurite outgrowth inhibition,neuronal homeostasis,precursor migration,plasticity,and neurodegeneration,its functions in the process of oxidative injury are largely uncharacterized.In this study,oligodendrocytes were extracted from the cerebral cortex of newborn Sprague-Dawley rats.We used hydrogen peroxide(H2O2)to induce an in vitro oligodendrocyte oxidative damage model and found that endogenously expressed Nogo-A is significantly upregulated in oligodendrocytes.After recombinant virus Ad-ZsGreen-rat Nogo-A infection of oligodendrocytes,Nogo-A expression was increased,and the infected oligodendrocytes were more susceptible to acute oxidative insults and exhibited a markedly elevated rate of cell death.Furthermore,knockdown of Nogo-A expression in oligodendrocytes by Ad-ZsGreen-shRNA-Nogo-A almost completely protected against oxidative stress induced by exogenous H2O2.Intervention with a Nogo-66 antibody,a LINGO1 blocker,or Y27632,an inhibitor in the Nogo-66-NgR/p75/LINGO-1-RhoA-ROCK pathway,did not affect the death of oligodendrocytes.Ad-ZsGreen-shRNA-Nogo-A also increased the levels of phosphorylated extracellular signal-regulated kinase 1/2 and inhibited BCL2 expression in oligodendrocytes.In conclusion,Nogo-A aggravated reactive oxygen species damage in oligodendrocytes,and phosphorylated extracellular signal-regulated kinase 1/2 and BCL2 might be involved in this process.This study was approved by the Ethics Committee of Peking University People’s Hospital,China(approval No.2018PHC081)on December 18,2018.展开更多
基金supported by Guangdong Medical Science and Technology Research Fund Project(No:A2017331)
文摘Objective: To study the influence of glycyrrhetinic acid(GA) on bronchial asthma(BA)smooth muscle proliferation and apoptosis as well as inflammatory factor expression and its molecular mechanism.Methods: Male SD guinea pigs were selected and made into asthma models, bronchial asthma smooth muscle cells were cultured and divided into BA group, GA group and GA + LM group that were treated with serum-free RPMI1640 culture medium, serumfree RPMI1640 culture medium containing 50 ng/mL glycyrrhetinic acid, serum-free RPMI1640 culture medium containing 50 ng/mL glycyrrhetinic acid and 100 ng/mL LM22B-10 respectively; normal guinea pigs were collected and bronchial smooth muscle cells were cultured as control group. The cell proliferation activity as well as the expression of proliferation and apoptosis genes, inflammatory factors and p-ERK1/2 was determined.Results: Proliferation activity value and m RNA expression of Bcl-2, TNF-α, IL-4, IL-6,YKL-40, protein expression of p-ERK1/2 of airway smooth muscle cell in BA group were significantly higher than those of control group while m RNA expression levels of Bax,caspase-9 as well as caspase-3 were significantly lower than that of control group(P < 0.05); proliferation activity value and m RNA expression of Bcl-2, TNF-α, IL-4, IL-6, YKL-40, protein expression of p-ERK1/2 of airway smooth muscle cell in GA group were significantly lower than those of BA group(P < 0.05) while the m RNA expression levels of Bax, caspase-9 as well as caspase-3 were significantly higher than those of BA group(P < 0.05); proliferation activity value and m RNA expression of Bcl-2, TNF-α, IL-4, IL-6, YKL-40 of airway smooth muscle cell in GA + LM group were significantly higher than those of GA group(P < 0.05) while m RNA expression levels of Bax, caspase-9 as well as caspase-3 were significantly lower that of GA group(P < 0.05).Conclusion: GA can inhibit the proliferation of bronchial smooth muscle cells and reduce the expression of inflammatory factors by inhibiting the phosphorylation of ER
基金Supported by National Natural Science Foundation of China(No.81473471 and No.81573708)Foundation of Guangdong Hospital of Chinese Medicine(No.YK2013B2N11,No.YN2014ZH01,and No.YN2014ZHR203)
文摘Objective: To analyze the effects of salvianolate on myocardial infarction in a murine in vivo model of ischemia and reperfusion (I/R) injury. Metheds: Myocardial I/R injury model was constructed in mice by 30 min of coronary occlusion followed by 24 h of reperfusion and pretreated with salvianolate 30 min before I/R (SAL group). The SAL group was compared with SHAM (no I/R and no salvianolate), I/R (no salvianolate), and ischemia preconditioning (IPC) groups. Furthermore, an ERK1/2 inhibitor PD98059 (1 mg/kg), and a phosphatidylinositol-3-kinase (PI3-K) inhibitor, LY294002 (7.5 mg/kg), were administered intraperitoneal injection (i.p) for 30 min prior to salvianolate, followed by I/R surgery in LY and PD groups. By using a double staining method, the ratio of the infarct size (IS) to left ventricle (LV) and of risk region (RR) to LV were compared among the groups. Correlations between IS and RR were analyzed. Western-blot was used to detect the extracellular signal-regulated kinase 1/2 (ERK1/2) and protein kinase B (AKT) phosphorylation changes. Results: There were no significant differences between RR to LV ratio among the SHAM, I/R, IPC and SAL groups (P〉0.05). The SAL and IPC groups had IS of 26.1% ± 1.4% and 22.3% ±2.9% of RR, respectively, both of which were significantly smaller than the I/R group (38.5% ± 2.9% of RR, P〈0.05, P〈0.01, respectively). Moreover, the phosphorylation of ERK1/2 was increased in SAL group (P〈0.05), while AKT had no significant change. LY294002 further reduced IS, whereas the protective role of salvianolate could be attenuated by PD98059, which increased the IS. Additionally, the IS was not linearly related to the RR (r=0.23, 0.45, 0.62, 0.17, and 0.52 in the SHAM, I/R, SAL, LY and PD groups, respectively). Conclusion: Salvianolate could reduce myocardial I/R injury in mice in vivo, which involves an ERK1/2 pathway, but not a PI3-K signaling pathway.
文摘Objective To investigate the signaling pathway through testing the effects of dexamethasone (Dex) on the activation of the extracellular signal-regulated protein kinase 1/2 (ERK1/2) and p38 kinase (p38) in HO-8910 cells.Methods Activation of the ERK1/2 and p38 was detected by Western blotting using the antibodies against the total ERK1/2 and p38 mitogen-activated protein kinases (MAPKs) protein and the phosphorylated forms of them. Results Dex could suppress the activation of ERK1/2, while enhance the activation of p38 rapidly and strongly in a dose- and time- dependent manner. Neither effect could be blocked by RU486, the antagonist of glucocorticoid receptor (GR).Conclusion Dex has rapid effects on the activation of ERK1/2 and p38, and these effects are not mediated by GR.
基金supported by grants from the National Natural Science Foundation of China (Grants 22177083,81922064,81874290,and 81803755)Sichuan Science and Technology Program (Grant No.2020JDRC0053,China)+1 种基金Fundamental Research Funds for the Central Universities (Grant No.2682020CX56,China)National Clinical Research Center for Geriatrics,West China Hospital,Sichuan University (Grant Z20201004,China)。
文摘The mitogen-activated protein kinase(MAPK)/extracellular signal-regulated kinase 1/2(ERK1/2) signaling pathway is widely activated by a variety of extracellular stimuli, and its dysregulation is associated with the proliferation, invasion, and migration of cancer cells. ERK1/2 is located at the distal end of this pathway and rarely undergoes mutations, making it an attractive target for anticancer drug development. Currently, an increasing number of ERK1/2 inhibitors have been designed and synthesized for antitumor therapy, among which representative compounds have entered clinical trials. When ERK1/2 signal transduction is eliminated, ERK5 may provide a bypass route to rescue proliferation, and weaken the potency of ERK1/2 inhibitors. Therefore, drug research targeting ERK5 or based on the compensatory mechanism of ERK5 for ERK1/2 opens up a new way for oncotherapy. This review provides an overview of the physiological and biological functions of ERKs, focuses on the structure-activity relationships of small molecule inhibitors targeting ERKs, with a view to providing guidance for future drug design and optimization, and discusses the potential therapeutic strategies to overcome drug resistance.
基金Supported by Specialized Research Fund for the Doctoral Program of Higher Education of China,No.20120142120048Natural Science Foundation of Hubei Province,China,No.2012FFB02308
文摘AIM: To investigate the association between endogenous hydrogen sulfide (H<sub>2</sub>S) and portal hypertension as well as its effect on vascular smooth muscle cells.
文摘In a recent manuscript published in Cell,Liang et al.discovered novel ferroptosis regulators,membrane-bound O-acyltransferase domain-containing 1 and 2(MBOAT1/2).1 These findings may have implications for ferroptosis-based cancer therapy.
基金This work was supported by a grant from the Project of China Postdoctoral Science Foundation (No. 20100480568).
文摘Background C-Jun N-terminal kinase (JNK) signaling pathway plays a critical role in cerebral ischemia. Although the mechanistic basis for this activation of JNK1/2 is uncertain, oxidative stress may play a role. The purpose of this study was to investigate whether the activation of JNK1/2 is associated with the production of endogenous nitric oxide (NO). Methods Ischemia and reperfusion (I/R) was induced by cerebral four-vessel occlusion. Sprague-Dawley (SD) rats were divided into 6 groups: sham group, I/R group, neuronal nitric oxide synthase (nNOS) inhibitor (7-nitroindazole, 7-NI) given group, inducible nitric oxide synthase (iNOS) inhibitor (2-amino-5,6-dihydro-methylthiazine, AMT) given group, sodium chloride control group, and 1% dimethyl sulfoxide (DMSO) control group. The levels of protein expression and phospho-JNK1/2 were detected by Western blotting and the survival hippocampus neurons in CA1 zone were observed by cresyl violet staining. Results The study illustrated two peaks of JNK1/2 activation occurred at 30 minutes and 3 days during reperfusion. 7-NI inhibited JNK1/2 activation during the early reperfusion, whereas AMT preferably attenuated JNK1/2 activation during the later reperfusion. Administration of 7-NI and AMT can decrease I/R-induced neuronal loss in hippocampal CA1 region. Conclusion JNK1/2 activation is associated with endogenous NO in response to ischemic insult.
基金This work was supported by the National Natural Science Foundation of China,No.81870996(to JZ).
文摘Nogo-A is considered one of the most important inhibitors of myelin-associated axonal regeneration in the central nervous system.It is mainly expressed by oligodendrocytes.Although previous studies have found regulatory roles for Nogo-A in neurite outgrowth inhibition,neuronal homeostasis,precursor migration,plasticity,and neurodegeneration,its functions in the process of oxidative injury are largely uncharacterized.In this study,oligodendrocytes were extracted from the cerebral cortex of newborn Sprague-Dawley rats.We used hydrogen peroxide(H2O2)to induce an in vitro oligodendrocyte oxidative damage model and found that endogenously expressed Nogo-A is significantly upregulated in oligodendrocytes.After recombinant virus Ad-ZsGreen-rat Nogo-A infection of oligodendrocytes,Nogo-A expression was increased,and the infected oligodendrocytes were more susceptible to acute oxidative insults and exhibited a markedly elevated rate of cell death.Furthermore,knockdown of Nogo-A expression in oligodendrocytes by Ad-ZsGreen-shRNA-Nogo-A almost completely protected against oxidative stress induced by exogenous H2O2.Intervention with a Nogo-66 antibody,a LINGO1 blocker,or Y27632,an inhibitor in the Nogo-66-NgR/p75/LINGO-1-RhoA-ROCK pathway,did not affect the death of oligodendrocytes.Ad-ZsGreen-shRNA-Nogo-A also increased the levels of phosphorylated extracellular signal-regulated kinase 1/2 and inhibited BCL2 expression in oligodendrocytes.In conclusion,Nogo-A aggravated reactive oxygen species damage in oligodendrocytes,and phosphorylated extracellular signal-regulated kinase 1/2 and BCL2 might be involved in this process.This study was approved by the Ethics Committee of Peking University People’s Hospital,China(approval No.2018PHC081)on December 18,2018.