期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于Kalman滤波的GM(1,1)-AR模型在高层建筑物沉降变形分析中的应用 被引量:19
1
作者 陈晨 魏冠军 +1 位作者 寇瑞雄 高志钰 《测绘工程》 CSCD 2018年第10期64-67,共4页
在传统的GM(1,1)模型和AR模型的基础上提出一种基于Kalman滤波的GM-AR模型预测新算法。利用卡尔曼滤波对原始监测数据进行滤波消噪,获取有效地实际变形量;然后对实际变形量中的趋势项和随机项运用GM(1,1)-AR组合模型进行建模组合。通过... 在传统的GM(1,1)模型和AR模型的基础上提出一种基于Kalman滤波的GM-AR模型预测新算法。利用卡尔曼滤波对原始监测数据进行滤波消噪,获取有效地实际变形量;然后对实际变形量中的趋势项和随机项运用GM(1,1)-AR组合模型进行建模组合。通过工程实例分析表明,基于卡尔曼滤波的GM(1,1)-AR模型相比单一的GM(1,1)模型和GM(1,1)-AR模型,有效地减弱观测噪声的影响,提高预测精度。 展开更多
关键词 变形分析 卡尔曼滤波 GM(1 1)-ar模型
下载PDF
一种改进灰色预测模型在变形预测中的应用 被引量:15
2
作者 容静 文鸿雁 周吕 《测绘科学》 CSCD 北大核心 2017年第3期35-38,63,共5页
针对传统的单一模型和非线性GM(1,1)-AR组合模型无法实现对非平稳、含噪时间序列信号进行优化处理的问题,该文提出了一种新的基于小波的GM(1,1)-AR模型预测算法。采用小波变换原理对监测数据进行消噪处理和不同频带的分离,有效地获取了... 针对传统的单一模型和非线性GM(1,1)-AR组合模型无法实现对非平稳、含噪时间序列信号进行优化处理的问题,该文提出了一种新的基于小波的GM(1,1)-AR模型预测算法。采用小波变换原理对监测数据进行消噪处理和不同频带的分离,有效地获取了实际变形量;利用GM(1,1)模型和AR时序分析模型对具有确定性的趋势项和不确定性的随机项进行建模组合,较好地综合了灰色模型拟合功能强大和时间序列善于处理细节信息两者优势。通过工程实例对比分析结果表明:基于小波的GM(1,1)-AR模型不仅有效剔除了多余噪声,还利用各种模型有机嵌套组合实现优势互补,新算法预测结果比各单一模型、非线性GM(1,1)-AR模型结果更为精确。 展开更多
关键词 变形分析 小波去噪 GM(1 1)-ar模型
原文传递
基于GM(1,1)+AR模型的钟差短期预报改进算法研究 被引量:5
3
作者 郭忠臣 孙朋 李致春 《大地测量与地球动力学》 CSCD 北大核心 2020年第9期907-912,共6页
针对传统GM(1,1)+AR组合模型的缺点,提出一种可及时更新建模序列和增强数据间相关性的循环式钟差预报模型,在预报过程中根据预报时刻的不同实时调整AR模型阶数。考虑到原始钟差建模序列长度会对预报精度造成影响,分别使用2 h、6 h、12 h... 针对传统GM(1,1)+AR组合模型的缺点,提出一种可及时更新建模序列和增强数据间相关性的循环式钟差预报模型,在预报过程中根据预报时刻的不同实时调整AR模型阶数。考虑到原始钟差建模序列长度会对预报精度造成影响,分别使用2 h、6 h、12 h和24 h的钟差序列构建模型。实验结果表明,改进模型的预报精度较传统方法有一定提高,且预报结果更稳定;使用不同长度的钟差序列构建模型对预报结果有一定影响,其中二次多项式模型受原始序列长度的影响较大,改进模型受影响较小。 展开更多
关键词 钟差 GM(1 1)+ar模型 循环预报 建模序列长度 BIC准则
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部