Breast cancer remains a leading cause of morbidity and mortality among women worldwide,emphasizing the urgent need for enhanced diagnostic and therapeutic approaches.Leucine-rich-alpha-2-glycoprotein 1(LRG1)has emerge...Breast cancer remains a leading cause of morbidity and mortality among women worldwide,emphasizing the urgent need for enhanced diagnostic and therapeutic approaches.Leucine-rich-alpha-2-glycoprotein 1(LRG1)has emerged as a notable target due to its markedly elevated expression in breast tumors,suggesting the viability of LRG1 as a theranostic target.In our study,we employed phage display technology to identify a peptide,termed ET,that binds to LRG1 with a dissociation constant of 48.4μM.After modified with fluorescent cyanine dye,the ET peptide showcased effective tumor-targeting imaging across three different primary breast tumor models and a metastatic breast tumor model.We also undertook a comprehensive safety evaluation,which verified the good biosafety credentials of ET peptide.In summary,the ET peptide identified in this study shows effective LRG1-targeting ability both in vitro and in vivo,thus exhibiting immense potential for clinical translation.展开更多
基金supported by grants from the National Natural Science Foundation of China(Nos.32000998 and 32201240)The Young Elite Scientists Sponsorship Program by Henan Association for Science and Technology(No.2022HYTP046)+2 种基金the China Postdoctoral Science Foundation(No.2021TQ0298)Science and Technology Development Project of Henan Province(Nos.222102310525,232102310351)National College Students’innovation and entrepreneurship training program(No.202310459197).
文摘Breast cancer remains a leading cause of morbidity and mortality among women worldwide,emphasizing the urgent need for enhanced diagnostic and therapeutic approaches.Leucine-rich-alpha-2-glycoprotein 1(LRG1)has emerged as a notable target due to its markedly elevated expression in breast tumors,suggesting the viability of LRG1 as a theranostic target.In our study,we employed phage display technology to identify a peptide,termed ET,that binds to LRG1 with a dissociation constant of 48.4μM.After modified with fluorescent cyanine dye,the ET peptide showcased effective tumor-targeting imaging across three different primary breast tumor models and a metastatic breast tumor model.We also undertook a comprehensive safety evaluation,which verified the good biosafety credentials of ET peptide.In summary,the ET peptide identified in this study shows effective LRG1-targeting ability both in vitro and in vivo,thus exhibiting immense potential for clinical translation.