Nonlinear Schrödinger-type equations are important models that have emerged from a wide variety of fields,such as fluids,nonlinear optics,the theory of deep-water waves,plasma physics,and so on.In this work,we ob...Nonlinear Schrödinger-type equations are important models that have emerged from a wide variety of fields,such as fluids,nonlinear optics,the theory of deep-water waves,plasma physics,and so on.In this work,we obtain different soliton solutions to coupled nonlinear Schrödinger-type(CNLST)equations by applying three integration tools known as the(G’/G^(2))-expansion function method,the modified direct algebraic method(MDAM),and the generalized Kudryashov method.The soliton and other solutions obtained by these methods can be categorized as single(dark,singular),complex,and combined soliton solutions,as well as hyperbolic,plane wave,and trigonometric solutions with arbitrary parameters.The spectrum of the solitons is enumerated along with their existence criteria.Moreover,2D,3D,and contour profiles of the reported results are also plotted by choosing suitable values of the parameters involved,which makes it easier for researchers to comprehend the physical phenomena of the governing equation.The solutions acquired demonstrate that the proposed techniques are efficient,valuable,and straightforward when constructing new solutions for various types of nonlinear partial differential equation that have important applications in applied sciences and engineering.All the reported solutions are verified by substitution back into the original equation through the software package Mathematica.展开更多
In this paper,two integrating strategies namely exp[-Ф(Х)]and (G'/G^(2))-expansion methods together with the attributes of local-M derivatives have been acknowledged on the electrical microtubule(MT)model to ret...In this paper,two integrating strategies namely exp[-Ф(Х)]and (G'/G^(2))-expansion methods together with the attributes of local-M derivatives have been acknowledged on the electrical microtubule(MT)model to retrieve soliton solutions.The said model performs a significant role in illustrating the waves propagation in nonlinear systems.MTs are also highly productive in signaling,cell motility,and intracellular transport.The proposed algorithms yielded solutions of bright,dark,singular,and combo fractional soliton type.The significance of the fractional parameters of the fetched results is explained and presented vividly.展开更多
基金the financial support provided for this research via the National Natural Science Foundation of China(11771407-52071298)ZhongYuan Science and Technology Innovation Leadership Program(214200510010)the MOST Innovation Methodproject(2019IM050400)。
文摘Nonlinear Schrödinger-type equations are important models that have emerged from a wide variety of fields,such as fluids,nonlinear optics,the theory of deep-water waves,plasma physics,and so on.In this work,we obtain different soliton solutions to coupled nonlinear Schrödinger-type(CNLST)equations by applying three integration tools known as the(G’/G^(2))-expansion function method,the modified direct algebraic method(MDAM),and the generalized Kudryashov method.The soliton and other solutions obtained by these methods can be categorized as single(dark,singular),complex,and combined soliton solutions,as well as hyperbolic,plane wave,and trigonometric solutions with arbitrary parameters.The spectrum of the solitons is enumerated along with their existence criteria.Moreover,2D,3D,and contour profiles of the reported results are also plotted by choosing suitable values of the parameters involved,which makes it easier for researchers to comprehend the physical phenomena of the governing equation.The solutions acquired demonstrate that the proposed techniques are efficient,valuable,and straightforward when constructing new solutions for various types of nonlinear partial differential equation that have important applications in applied sciences and engineering.All the reported solutions are verified by substitution back into the original equation through the software package Mathematica.
文摘In this paper,two integrating strategies namely exp[-Ф(Х)]and (G'/G^(2))-expansion methods together with the attributes of local-M derivatives have been acknowledged on the electrical microtubule(MT)model to retrieve soliton solutions.The said model performs a significant role in illustrating the waves propagation in nonlinear systems.MTs are also highly productive in signaling,cell motility,and intracellular transport.The proposed algorithms yielded solutions of bright,dark,singular,and combo fractional soliton type.The significance of the fractional parameters of the fetched results is explained and presented vividly.