The increasing demand in the diverse device applications of transparent conducting oxides (TCOs) requires synthesis of new TCOs of n- or p-type conductivity. This article is about materials engineering of ZnO-SnO2- ...The increasing demand in the diverse device applications of transparent conducting oxides (TCOs) requires synthesis of new TCOs of n- or p-type conductivity. This article is about materials engineering of ZnO-SnO2- In2O3-Ga2O3 to synthesize powders of the quaternary compound Zn2-xSn1-xlnxGaxO4-δ in the stoichiometry of x = 0.2, 0.3, and 0.4 by solid state reaction at 1275℃. Lattice parameters were determined by X-ray diffraction (XRD) technique and solubility of In3+ and Ga3+ in spinel Zn2SnO4 was found at 1275℃. The solubility limit of In3+ and Ga3+ in Zn2SnO4 is found at below x = 0.4. The optical transmittance approximated by the UV-Vis reflectance spectra showed excellent characteristics while optical band gap was consistent across 3.2 eV with slight decrease along increasing x value. Carrier mobility of the species was considerably higher than the older versions of zinc stannate spinel co-substitutions whereas the carrier concentrations were moderate.展开更多
Epsilon-near-zero(ENZ)modes have attracted extensive interests due to its ultrasmall mode volume resulting in ex-tremely strong light-matter interaction(LMI)for active optoelectronic devices.The ENZ modes can be elect...Epsilon-near-zero(ENZ)modes have attracted extensive interests due to its ultrasmall mode volume resulting in ex-tremely strong light-matter interaction(LMI)for active optoelectronic devices.The ENZ modes can be electrically toggled between on and off states with a classic metal-insulator-semiconductor(MIS)configuration and therefore allow access to electro-absorption(E-A)modulation.Relying on the quantum confinement of charge-carriers in the doped semiconductor,the fundamental limitation of achieving high modulation efficiency with MIS junction is that only a nanometer-thin ENZ confinement layer can contribute to the strength of E-A.Further,for the ENZ based spatial light modulation,the require-ment of resonant coupling inevitably leads to small absolute modulation depth and limited spectral bandwidth as restric-ted by the properties of the plasmonic or high-Q resonance systems.In this paper,we proposed and demonstrated a dual-ENZ mode scheme for spatial light modulation with a TCOs/dielectric/silicon nanotrench configuration for the first time.Such a SIS junction can build up two distinct ENZ layers arising from the induced charge-carriers of opposite polar-ities adjacent to both faces of the dielectric layer.The non-resonant and low-loss deep nanotrench framework allows the free space light to be modulated efficiently via interaction of dual ENZ modes in an elongated manner.Our theoretical and experimental studies reveal that the dual ENZ mode scheme in the SIS configuration leverages the large modulation depth,extended spectral bandwidth together with high speed switching,thus holding great promise for achieving electric-ally addressed spatial light modulation in near-to mid-infrared regions.展开更多
文摘The increasing demand in the diverse device applications of transparent conducting oxides (TCOs) requires synthesis of new TCOs of n- or p-type conductivity. This article is about materials engineering of ZnO-SnO2- In2O3-Ga2O3 to synthesize powders of the quaternary compound Zn2-xSn1-xlnxGaxO4-δ in the stoichiometry of x = 0.2, 0.3, and 0.4 by solid state reaction at 1275℃. Lattice parameters were determined by X-ray diffraction (XRD) technique and solubility of In3+ and Ga3+ in spinel Zn2SnO4 was found at 1275℃. The solubility limit of In3+ and Ga3+ in Zn2SnO4 is found at below x = 0.4. The optical transmittance approximated by the UV-Vis reflectance spectra showed excellent characteristics while optical band gap was consistent across 3.2 eV with slight decrease along increasing x value. Carrier mobility of the species was considerably higher than the older versions of zinc stannate spinel co-substitutions whereas the carrier concentrations were moderate.
基金financial supports from National Key Research and Development Program of China (No.2019YFB2203402)National Natural Science Foundation of China (Nos.11874029 and 92050108)+4 种基金Guangdong Science and Technology Program International Cooperation Program (Nos.2021A0505030038)Guangdong Basic and Applied Basic Research Foundation (Nos.2020B1515020037 and 2022B1515020069)Pearl River Talent Plan Program of Guangdong (No.2019QN01X120)Fundamental Research Funds for the Central Universities (No.21621108)supported by UK EPSRC Grant EP/T00097X/1
文摘Epsilon-near-zero(ENZ)modes have attracted extensive interests due to its ultrasmall mode volume resulting in ex-tremely strong light-matter interaction(LMI)for active optoelectronic devices.The ENZ modes can be electrically toggled between on and off states with a classic metal-insulator-semiconductor(MIS)configuration and therefore allow access to electro-absorption(E-A)modulation.Relying on the quantum confinement of charge-carriers in the doped semiconductor,the fundamental limitation of achieving high modulation efficiency with MIS junction is that only a nanometer-thin ENZ confinement layer can contribute to the strength of E-A.Further,for the ENZ based spatial light modulation,the require-ment of resonant coupling inevitably leads to small absolute modulation depth and limited spectral bandwidth as restric-ted by the properties of the plasmonic or high-Q resonance systems.In this paper,we proposed and demonstrated a dual-ENZ mode scheme for spatial light modulation with a TCOs/dielectric/silicon nanotrench configuration for the first time.Such a SIS junction can build up two distinct ENZ layers arising from the induced charge-carriers of opposite polar-ities adjacent to both faces of the dielectric layer.The non-resonant and low-loss deep nanotrench framework allows the free space light to be modulated efficiently via interaction of dual ENZ modes in an elongated manner.Our theoretical and experimental studies reveal that the dual ENZ mode scheme in the SIS configuration leverages the large modulation depth,extended spectral bandwidth together with high speed switching,thus holding great promise for achieving electric-ally addressed spatial light modulation in near-to mid-infrared regions.