期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Semantic image annotation based on GMM and random walk model 被引量:1
1
作者 田东平 《High Technology Letters》 EI CAS 2017年第2期221-228,共8页
Automatic image annotation has been an active topic of research in computer vision and pattern recognition for decades.A two stage automatic image annotation method based on Gaussian mixture model(GMM) and random walk... Automatic image annotation has been an active topic of research in computer vision and pattern recognition for decades.A two stage automatic image annotation method based on Gaussian mixture model(GMM) and random walk model(abbreviated as GMM-RW) is presented.To start with,GMM fitted by the rival penalized expectation maximization(RPEM) algorithm is employed to estimate the posterior probabilities of each annotation keyword.Subsequently,a random walk process over the constructed label similarity graph is implemented to further mine the potential correlations of the candidate annotations so as to capture the refining results,which plays a crucial role in semantic based image retrieval.The contributions exhibited in this work are multifold.First,GMM is exploited to capture the initial semantic annotations,especially the RPEM algorithm is utilized to train the model that can determine the number of components in GMM automatically.Second,a label similarity graph is constructed by a weighted linear combination of label similarity and visual similarity of images associated with the corresponding labels,which is able to avoid the phenomena of polysemy and synonym efficiently during the image annotation process.Third,the random walk is implemented over the constructed label graph to further refine the candidate set of annotations generated by GMM.Conducted experiments on the standard Corel5 k demonstrate that GMM-RW is significantly more effective than several state-of-the-arts regarding their effectiveness and efficiency in the task of automatic image annotation. 展开更多
关键词 semantic image annotation Gaussian mixture model GMM) random walk rival penalized expectation maximization rpem image retrieval
下载PDF
非线性信道的均衡算法研究 被引量:14
2
作者 刘顺兰 蒋树南 《电子学报》 EI CAS CSCD 北大核心 2010年第10期2219-2223,共5页
本文使用Hammerstein模型和维纳模型代替Volterra级数模型来模拟非线性结构以降低运算复杂度,提出了一个由Hammerstein模型和维纳模型构建成的非线性信道传输系统的模型.基于该系统模型,分别提出并推导了三种非线性信道的均衡算法:NCRL... 本文使用Hammerstein模型和维纳模型代替Volterra级数模型来模拟非线性结构以降低运算复杂度,提出了一个由Hammerstein模型和维纳模型构建成的非线性信道传输系统的模型.基于该系统模型,分别提出并推导了三种非线性信道的均衡算法:NCRLS算法、NCKalman算法和NCRPEM算法,并对这三种新算法的性能进行了比较.仿真结果表明,在剩余均方误差方面三种算法中NCKalman算法最小,NCRPEM算法次之,NCRLS算法较差;在收敛速度方面NCRPEM算法收敛最快,NCRLS算法次之,NCKalman算法较差. 展开更多
关键词 非线性信道 HAMMERSTEIN模型 维纳模型 RLS算法 KALMAN算法 rpem算法
下载PDF
改进批处理RPEM算法用于说话人识别
3
作者 项要杰 杨俊安 +1 位作者 李晋徽 杨瑞国 《计算机应用研究》 CSCD 北大核心 2013年第12期3579-3582,共4页
针对传统EM算法训练GMM不能充分利用训练数据所属高斯分量信息,从而在一定程度上影响说话人识别性能的缺陷,采用RPEM(竞争惩罚EM)算法训练GMM,并引入批处理RPEM算法解决RPEM算法运算量大、收敛速度慢的问题,同时针对RPEM和批处理RPEM算... 针对传统EM算法训练GMM不能充分利用训练数据所属高斯分量信息,从而在一定程度上影响说话人识别性能的缺陷,采用RPEM(竞争惩罚EM)算法训练GMM,并引入批处理RPEM算法解决RPEM算法运算量大、收敛速度慢的问题,同时针对RPEM和批处理RPEM算法训练时方差优化存在的问题进行了改进,提出了改进的批处理RPEM算法。在Chains说话人识别数据库上的实验表明,改进的批处理RPEM算法取得了相对于传统EM、RPEM以及批处理RPEM算法更好的性能,还极大地提高了训练效率,减小了运算量,说明了提出的改进批处理RPEM算法用于说话人识别时的有效性。 展开更多
关键词 说话人识别 期望最大化算法 竞争惩罚EM算法 批处理竞争惩罚EM算法
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部