The thermosensitive poly ( N-isopropylacrylamide ) (PNIPAAm) and poly (N-isopropylacrylamide-co-acrylamide) [ poly (NIPAAm-co-AAm) ] hydrogels with different acrylamide molar percentage are prepared by radiati...The thermosensitive poly ( N-isopropylacrylamide ) (PNIPAAm) and poly (N-isopropylacrylamide-co-acrylamide) [ poly (NIPAAm-co-AAm) ] hydrogels with different acrylamide molar percentage are prepared by radiation polymerization using Co^60 γ-ray. Their swelling equilibrium data in the media of deionized water, NaCl aqueous solutions and different pH buffer solutions are determined. It appears that lower critical solution temperature (LCST) of the hydrogels will drop with the increase of ionic strength and increase with the rising of acrylamide content, A semi-empirical formula is set up with the experimental results. Moreover, it also indicates that this copolymer is pH-sensitive, which is similar to the homopolymer of PNIPAAm.展开更多
基金Project Supported by Science Foundation of Shanghai MunicipalCommission of Science and Technology (Grant No .02DJ14030)
文摘The thermosensitive poly ( N-isopropylacrylamide ) (PNIPAAm) and poly (N-isopropylacrylamide-co-acrylamide) [ poly (NIPAAm-co-AAm) ] hydrogels with different acrylamide molar percentage are prepared by radiation polymerization using Co^60 γ-ray. Their swelling equilibrium data in the media of deionized water, NaCl aqueous solutions and different pH buffer solutions are determined. It appears that lower critical solution temperature (LCST) of the hydrogels will drop with the increase of ionic strength and increase with the rising of acrylamide content, A semi-empirical formula is set up with the experimental results. Moreover, it also indicates that this copolymer is pH-sensitive, which is similar to the homopolymer of PNIPAAm.