Adaptive antenna arrays at both the base and mobile stations can further increase system capacity and improve the quality of service of conventional orthogonal frequency division multiplexing (OFDM) systems. Convent...Adaptive antenna arrays at both the base and mobile stations can further increase system capacity and improve the quality of service of conventional orthogonal frequency division multiplexing (OFDM) systems. Conventional adaptive antenna array-based multiple-input multiple-output (MIMO)/OFDM systems use the sub-carriers characterized by the largest eigenvalue to transmit the OFDM symbols. This paper describes the performance of adaptive subchannel assignment-based MIMO/OFDM systems over multipath fading channels, The system adaptively selects the eigenvectors associated with the relatively large subchannel eigenvalues to generate the antenna array weights at the base and mobile stations and then adaptively assigns the corresponding best subchannels to transmit the OFDM symbols. Simulation results show that the proposed system can achieve better performance than the conventional adaptive antenna arraybased MIMO/OFDM system over multipath fading channels.展开更多
This paper presents an efficient Joint Coding and Modulation Diversity ( JCMD ) scheme. The proposed scheme applied modulation diversity technique to MIMO-OFDM system which can effectively use time, frequency and spac...This paper presents an efficient Joint Coding and Modulation Diversity ( JCMD ) scheme. The proposed scheme applied modulation diversity technique to MIMO-OFDM system which can effectively use time, frequency and space diversity combined with channel coding. In fading channel,the proposed scheme not only achieves high spectral efficiency,but also greatly enhances the reliability of wireless transmission. The self- developed hardware prototype system proves that the proposed scheme can be realized and has high reliability. Compared with traditional MIMO-OFDM scheme based on bit-interleaved coded modulation ( BICM) ,software and hardware simulation results show that the proposed scheme with the optimal rotational angle can obtain a significant performance advantage both for precoded and non-precoded system in the condition of non-perfect channel knowledge and non-ideal synchronization.展开更多
基金Supported partially by the Hong Kong Telecom Institute ofInformation Technology and the Hong Kong Research GrantCouncil (No. HKUST6164/02E) and the Ministry of EducationFund of China (No. SRFDP20030003039)
文摘Adaptive antenna arrays at both the base and mobile stations can further increase system capacity and improve the quality of service of conventional orthogonal frequency division multiplexing (OFDM) systems. Conventional adaptive antenna array-based multiple-input multiple-output (MIMO)/OFDM systems use the sub-carriers characterized by the largest eigenvalue to transmit the OFDM symbols. This paper describes the performance of adaptive subchannel assignment-based MIMO/OFDM systems over multipath fading channels, The system adaptively selects the eigenvectors associated with the relatively large subchannel eigenvalues to generate the antenna array weights at the base and mobile stations and then adaptively assigns the corresponding best subchannels to transmit the OFDM symbols. Simulation results show that the proposed system can achieve better performance than the conventional adaptive antenna arraybased MIMO/OFDM system over multipath fading channels.
基金Sponsored by the National Natural Science Fund (Grant No. 61171101)the National Great Science Specific Project (Grant No. 2009ZX03003-011-03)the R&S-BUPT Graduate Innovation Fund
文摘This paper presents an efficient Joint Coding and Modulation Diversity ( JCMD ) scheme. The proposed scheme applied modulation diversity technique to MIMO-OFDM system which can effectively use time, frequency and space diversity combined with channel coding. In fading channel,the proposed scheme not only achieves high spectral efficiency,but also greatly enhances the reliability of wireless transmission. The self- developed hardware prototype system proves that the proposed scheme can be realized and has high reliability. Compared with traditional MIMO-OFDM scheme based on bit-interleaved coded modulation ( BICM) ,software and hardware simulation results show that the proposed scheme with the optimal rotational angle can obtain a significant performance advantage both for precoded and non-precoded system in the condition of non-perfect channel knowledge and non-ideal synchronization.