The first Chinese Mars exploration will fulfill the goals of "orbiting, landing and roving" in one mission. This paper briefly describes the process of international Mars exploration and analyzes the development of ...The first Chinese Mars exploration will fulfill the goals of "orbiting, landing and roving" in one mission. This paper briefly describes the process of international Mars exploration and analyzes the development of Chinese Mars exploration. It focuses on introducing the scientific significance and engineering difficulties of Mars exploration, and provides an overview of the system design of the probe, including the flight profile, the preliminary selection of the landing site, the entry, descent and landing (also known as EDL) process. Four types of key technologies, including telecommunications, autonomous control, the EDL process, and its structure and mechanism, are detailed in this paper. Finally, the paper highlights the expected scientific and engineering results of the mission.展开更多
火星进入、下降与着陆技术(entry,descent and landing,EDL)是火星着陆探测最为关键的环节。火星与地球再入返回过程相比,由于火星大气成分、物理性质与地球大气存在较大差别,且具有较大不确定性,使火星EDL过程历经时间短、状态变化快,...火星进入、下降与着陆技术(entry,descent and landing,EDL)是火星着陆探测最为关键的环节。火星与地球再入返回过程相比,由于火星大气成分、物理性质与地球大气存在较大差别,且具有较大不确定性,使火星EDL过程历经时间短、状态变化快,对减速性能要求高,时序紧张。从工程实现角度分阶段开展了任务分析,识别了火星EDL环节面临的问题和挑战,提出了关键环节技术途径选择。展开更多
Reported in this paper are the petrology and mineral chemistry of GRV 020090, the second Martian meteorite collected from the Grove Mountains, Antarctica. This meteorite, with a mass of 7.54 g, is completely covered b...Reported in this paper are the petrology and mineral chemistry of GRV 020090, the second Martian meteorite collected from the Grove Mountains, Antarctica. This meteorite, with a mass of 7.54 g, is completely covered by a black and glazy fusion crust. It has two distinct textural regions. The interstitial region is composed of euhedral grains of olivine, pigeonite, and anhedral interstitial maskelynite, with minor chromite, augite, phosphates and troilite. The poikilitic region consists of three clasts of pyroxenes, each of which has a pigeonite core and an augite rim. A few grains of subhedral to rounded olivine and euhedral chromite are enclosed in the pyroxene oikocrysts. GRV 020090 is classified as a new member of lherzolitic shergottites based on the modal composition and mineral chemistry. This work will shed light on the composition of Martian crust and magmatism on the Mars.展开更多
Scheduled for an Earth-to-Mars launch opportunity in 2020,the China’s Mars probe will arrive on Mars in 2021 with the primary objective of injecting an orbiter and placing a lander and a rover on the surface of the R...Scheduled for an Earth-to-Mars launch opportunity in 2020,the China’s Mars probe will arrive on Mars in 2021 with the primary objective of injecting an orbiter and placing a lander and a rover on the surface of the Red Planet.For China’s 2020 Mars exploration mission to achieve success,many key technologies must be realized.In this paper,China’s 2020 Mars mission and the spacecraft architecture are first introduced.Then,the preliminary launch opportunity,Earth–Mars transfer,Mars capture,and mission orbits are described.Finally,the main navigation schemes are summarized.展开更多
This paper is to promote investigation into the nuclear rocket engine (NRE) propulsion option that is considered as a key technology for manned Mars exploration. Russian NRE developed since the 1950s in the former S...This paper is to promote investigation into the nuclear rocket engine (NRE) propulsion option that is considered as a key technology for manned Mars exploration. Russian NRE developed since the 1950s in the former Soviet Union to a full-scale prototype by the 1990s is viewed as advantageous and the most suitable starting point concept for manned Mars mission application study. The main features of Russian heterogeneous core NRE design are described and the most valuable experimental performance results are summarized. These results have demonstrated the significant specific impulse performance advantage of the NRE over conventional liquid rocket engine (LRE) propulsion technologies. Based on past experience, the recent developments in the field of high-temperature nuclear fuels, and the latest conceptual studies, the developed NRE concept is suggested to be upgraded to the nuclear power and propulsion system (NPPS), more suitable for future manned Mars missions. Although the NRE still needs development for space application, the problems are solvable with additional effort and funding.展开更多
火星探测是当前太阳系探测和行星科学的焦点.经过近60年的发展,火星成为除地球外,探测和研究程度最高的太阳系行星体,派生出火星空间环境、火星大气、火星表层/次表层物质组成、形貌构造、撞击历史、冰川和冰冻层、气候变化、火星内部...火星探测是当前太阳系探测和行星科学的焦点.经过近60年的发展,火星成为除地球外,探测和研究程度最高的太阳系行星体,派生出火星空间环境、火星大气、火星表层/次表层物质组成、形貌构造、撞击历史、冰川和冰冻层、气候变化、火星内部结构等多个研究领域.火星陨石研究和实验室模拟研究(实验模拟、数值模拟等)也得以快速发展.火星的重大科学发现包含早期和现代的水活动证据、地质环境多样性、现代地质过程监测、甲烷和有机物的发现、大气组成和演化、当前和近期气候变化、重力场和表面辐射环境等.重大科学成果的取得得益于科学目标规划的指引,也影响着未来科学目标的制订.通过梳理美国火星探测项目分析组(Mars Exploration Program Analysis Group,MEPAG)近20年火星探测科学目标(生命、气候、地质、载人)的演变,展现出国际火星探测思路及未来探测重点.未来10年的火星探测将进一步认知火星内部结构、开启火星生命探测的新阶段和开展火星和火星卫星样品返回.中国开展的火星探测任务也将为国际火星科学发展做出贡献.当前火星仍有诸多重大科学问题未有解答,这些问题与太阳系的重大科学问题紧密融合,突显出火星探测在太阳系形成演化以及太阳系行星宜居性的形成演化研究中不可替代的重要地位.展开更多
文摘The first Chinese Mars exploration will fulfill the goals of "orbiting, landing and roving" in one mission. This paper briefly describes the process of international Mars exploration and analyzes the development of Chinese Mars exploration. It focuses on introducing the scientific significance and engineering difficulties of Mars exploration, and provides an overview of the system design of the probe, including the flight profile, the preliminary selection of the landing site, the entry, descent and landing (also known as EDL) process. Four types of key technologies, including telecommunications, autonomous control, the EDL process, and its structure and mechanism, are detailed in this paper. Finally, the paper highlights the expected scientific and engineering results of the mission.
文摘火星进入、下降与着陆技术(entry,descent and landing,EDL)是火星着陆探测最为关键的环节。火星与地球再入返回过程相比,由于火星大气成分、物理性质与地球大气存在较大差别,且具有较大不确定性,使火星EDL过程历经时间短、状态变化快,对减速性能要求高,时序紧张。从工程实现角度分阶段开展了任务分析,识别了火星EDL环节面临的问题和挑战,提出了关键环节技术途径选择。
基金This work is supported by the National Natural Science Foundation of China(Grant No.40232026)the pilot project of knowledge innovation program of the Chinese Academy of Sciences(Grant No.KZCX3-SW-123).
文摘Reported in this paper are the petrology and mineral chemistry of GRV 020090, the second Martian meteorite collected from the Grove Mountains, Antarctica. This meteorite, with a mass of 7.54 g, is completely covered by a black and glazy fusion crust. It has two distinct textural regions. The interstitial region is composed of euhedral grains of olivine, pigeonite, and anhedral interstitial maskelynite, with minor chromite, augite, phosphates and troilite. The poikilitic region consists of three clasts of pyroxenes, each of which has a pigeonite core and an augite rim. A few grains of subhedral to rounded olivine and euhedral chromite are enclosed in the pyroxene oikocrysts. GRV 020090 is classified as a new member of lherzolitic shergottites based on the modal composition and mineral chemistry. This work will shed light on the composition of Martian crust and magmatism on the Mars.
基金the National Natural Science Foundation of China(Grant No.11672126)Innovation Funded Project of Shanghai Aerospace Science and Technology(Grant No.SAST2015036)+4 种基金the Opening Grant from the Key Laboratory of Space Utilization,Chinese Academy of Sciences(LSU-2016-07-01)Funding of Jiangsu Innovation Program for Graduate Education(Grant No.KYZZ160170)the Fundamental Research Funds for the Central UniversitiesFunding for Outstanding Doctoral Dissertation in NUAA(Grant No.BCXJ16-10)The authors fully appreciate their financial supports.
文摘Scheduled for an Earth-to-Mars launch opportunity in 2020,the China’s Mars probe will arrive on Mars in 2021 with the primary objective of injecting an orbiter and placing a lander and a rover on the surface of the Red Planet.For China’s 2020 Mars exploration mission to achieve success,many key technologies must be realized.In this paper,China’s 2020 Mars mission and the spacecraft architecture are first introduced.Then,the preliminary launch opportunity,Earth–Mars transfer,Mars capture,and mission orbits are described.Finally,the main navigation schemes are summarized.
文摘This paper is to promote investigation into the nuclear rocket engine (NRE) propulsion option that is considered as a key technology for manned Mars exploration. Russian NRE developed since the 1950s in the former Soviet Union to a full-scale prototype by the 1990s is viewed as advantageous and the most suitable starting point concept for manned Mars mission application study. The main features of Russian heterogeneous core NRE design are described and the most valuable experimental performance results are summarized. These results have demonstrated the significant specific impulse performance advantage of the NRE over conventional liquid rocket engine (LRE) propulsion technologies. Based on past experience, the recent developments in the field of high-temperature nuclear fuels, and the latest conceptual studies, the developed NRE concept is suggested to be upgraded to the nuclear power and propulsion system (NPPS), more suitable for future manned Mars missions. Although the NRE still needs development for space application, the problems are solvable with additional effort and funding.
文摘火星探测是当前太阳系探测和行星科学的焦点.经过近60年的发展,火星成为除地球外,探测和研究程度最高的太阳系行星体,派生出火星空间环境、火星大气、火星表层/次表层物质组成、形貌构造、撞击历史、冰川和冰冻层、气候变化、火星内部结构等多个研究领域.火星陨石研究和实验室模拟研究(实验模拟、数值模拟等)也得以快速发展.火星的重大科学发现包含早期和现代的水活动证据、地质环境多样性、现代地质过程监测、甲烷和有机物的发现、大气组成和演化、当前和近期气候变化、重力场和表面辐射环境等.重大科学成果的取得得益于科学目标规划的指引,也影响着未来科学目标的制订.通过梳理美国火星探测项目分析组(Mars Exploration Program Analysis Group,MEPAG)近20年火星探测科学目标(生命、气候、地质、载人)的演变,展现出国际火星探测思路及未来探测重点.未来10年的火星探测将进一步认知火星内部结构、开启火星生命探测的新阶段和开展火星和火星卫星样品返回.中国开展的火星探测任务也将为国际火星科学发展做出贡献.当前火星仍有诸多重大科学问题未有解答,这些问题与太阳系的重大科学问题紧密融合,突显出火星探测在太阳系形成演化以及太阳系行星宜居性的形成演化研究中不可替代的重要地位.