Differential synthetic aperture radar interferometry (D-InSAR) can only measure one-dimensional surface displacements along the line-of-sight (LOS) direction which greatly inhibits its development and application.In t...Differential synthetic aperture radar interferometry (D-InSAR) can only measure one-dimensional surface displacements along the line-of-sight (LOS) direction which greatly inhibits its development and application.In this paper, we introduce a novel approach to measuring two-dimensional (2-D) surface displacements by exploiting a single InSAR pair, which is called multi-aperture InSAR (MAI) technology.We study the effects of baseline errors and the ionosphere on MAI technology and develop a directional filter and interpolator to minimize the ionospheric effects.A PALSAR image pair covering the 2010 Yushu earthquake is used to estimate the 2-D displacement fields of the earthquake using the MAI approach.The experimental results show that MAI is superior to conventional Offset-Tracking and therefore has great potential in co-seismic displacement measurement and source parameter inversion.展开更多
基金supplied by the Japan Aerospace Exploration Agency(JAXA)(Grant Nos.AO-430 and AO-582)supported by National Natural Science Foun-dation of China(Grant Nos.40974006 and 40774003)+2 种基金National Basic Research Program of China(Grant No.2012CB719903)Research Grants Council(RGC)of the Hong Kong Special Administrative Region(Grant No.PolyU5146/11E)Scholarship Award for an Excellent Doctoral Student granted by the Ministry of Education of China(Grant No.085201001)
文摘Differential synthetic aperture radar interferometry (D-InSAR) can only measure one-dimensional surface displacements along the line-of-sight (LOS) direction which greatly inhibits its development and application.In this paper, we introduce a novel approach to measuring two-dimensional (2-D) surface displacements by exploiting a single InSAR pair, which is called multi-aperture InSAR (MAI) technology.We study the effects of baseline errors and the ionosphere on MAI technology and develop a directional filter and interpolator to minimize the ionospheric effects.A PALSAR image pair covering the 2010 Yushu earthquake is used to estimate the 2-D displacement fields of the earthquake using the MAI approach.The experimental results show that MAI is superior to conventional Offset-Tracking and therefore has great potential in co-seismic displacement measurement and source parameter inversion.