A great deal of Mesozoic hypobatholithic granites and hypabyssal porphyries develop in the Qinling Mountains. The former has long been regarded as transformation type (or S-type), and the latter associated with Mo-min...A great deal of Mesozoic hypobatholithic granites and hypabyssal porphyries develop in the Qinling Mountains. The former has long been regarded as transformation type (or S-type), and the latter associated with Mo-mineralization regarded as syntexis type (or l-type) granitoids. Statistics show that Sr, andδ18O of hypabyssal porphyries respectively range from 0.705 to 0.714, and from 7.2‰ to 12.1‰, agreeing with those of hypobatholithes (Sr1=0.705-0.710, δ18O = 6.1‰-10.4‰), which indicates that they share similar material sources and petrogenic mechanism. Based on analysis of lithological, mineralogical and geochemical characteristics of these granitoids and on study of their petrogenic tectonic background and regional geophysical data, we argue that both the shallow-seated porphyries and deep-seated batholithes were the products of Mesozoic collision between South China and North China paleocontinents. Subsequently, all these granti-toids should be attributed to collision type.展开更多
文摘A great deal of Mesozoic hypobatholithic granites and hypabyssal porphyries develop in the Qinling Mountains. The former has long been regarded as transformation type (or S-type), and the latter associated with Mo-mineralization regarded as syntexis type (or l-type) granitoids. Statistics show that Sr, andδ18O of hypabyssal porphyries respectively range from 0.705 to 0.714, and from 7.2‰ to 12.1‰, agreeing with those of hypobatholithes (Sr1=0.705-0.710, δ18O = 6.1‰-10.4‰), which indicates that they share similar material sources and petrogenic mechanism. Based on analysis of lithological, mineralogical and geochemical characteristics of these granitoids and on study of their petrogenic tectonic background and regional geophysical data, we argue that both the shallow-seated porphyries and deep-seated batholithes were the products of Mesozoic collision between South China and North China paleocontinents. Subsequently, all these granti-toids should be attributed to collision type.