There is a rapidly rising trend in the development and application of molecular marker assays for gene map- ping and discovery in field crops and trees. Thus far, more than 50 SNP arrays and 15 different types of geno...There is a rapidly rising trend in the development and application of molecular marker assays for gene map- ping and discovery in field crops and trees. Thus far, more than 50 SNP arrays and 15 different types of genotyping-by-sequencing (GBS) platforms have been developed in over 25 crop species and perennial trees. However, much less effort has been made on developing ultra-high-throughput and cost-effective genotyping platforms for applied breeding programs. In this review, we discuss the scientific bottlenecks in existing SNP arrays and GBS technologies and the strategies to develop targeted platforms for crop mo- lecular breeding. We propose that future practical breeding platforms should adopt automated genotyping technologies, either array or sequencing based, target functional polymorphisms underpinning economic traits, and provide desirable prediction accuracy for quantitative traits, with universal applications under wide genetic backgrounds in crops. The development of such platforms faces serious challenges at both the technological level due to cost ineffectiveness, and the knowledge level due to large genotype- phenotype gaps in crop plants. It is expected that such genotyping platforms will be achieved in the next ten years in major crops in consideration of (a) rapid development in gene discovery of important traits, (b) deepened understanding of quantitative traits through new analytical models and population designs, (c) integration of multi-layer -omics data leading to identification of genes and pathways responsible for important breeding traits, and (d) improvement in cost effectiveness of large-scale genotyping. Crop breeding chips and genotyping platforms will provide unprecedented opportunities to accelerate the development of cultivars with desired yield potential, quality, and enhanced adaptation to mitigate the effects of climate change.展开更多
A detailed understanding of genetic architecture of mRNA expression by millions of genetic variants is important for studying quantitative trait variation. In this study, we identified 1.25M SNPs with a minor allele f...A detailed understanding of genetic architecture of mRNA expression by millions of genetic variants is important for studying quantitative trait variation. In this study, we identified 1.25M SNPs with a minor allele frequency greater than 0.05 by combining reduced genome sequencing (GBS), high- density array technologies (600K), and previous deep RNA-sequencing data from 368 diverse inbred lines of maize. The balanced allelic frequencies and distributions in a relatively large and diverse natural panel helped to identify expression quantitative trait loci (eQTLs) associated with more than 18 000 genes (63.4% of tested genes). We found that distant eQTLs were more frequent (~75% of all eQTLs) across the whole genome. Thirteen novel associated loci affecting maize kernel oil concentration were identified using the new dataset, among which one intergenic locus affected the kernel oil variation by controlling expression of three other known oil-related genes. Altogether, this study provides resources for expanding our understanding of cellular regulatory mechanisms of transcriptome variation and the landscape of functional variants within the maize genome, thereby enhancing the understanding of quantitative variations.展开更多
基金This study was supported by the National Key Research and Development Program of China (2016YFD0101802 and 2016YFE0108600) and National Natural Science Foundation of China (31550110212).
文摘There is a rapidly rising trend in the development and application of molecular marker assays for gene map- ping and discovery in field crops and trees. Thus far, more than 50 SNP arrays and 15 different types of genotyping-by-sequencing (GBS) platforms have been developed in over 25 crop species and perennial trees. However, much less effort has been made on developing ultra-high-throughput and cost-effective genotyping platforms for applied breeding programs. In this review, we discuss the scientific bottlenecks in existing SNP arrays and GBS technologies and the strategies to develop targeted platforms for crop mo- lecular breeding. We propose that future practical breeding platforms should adopt automated genotyping technologies, either array or sequencing based, target functional polymorphisms underpinning economic traits, and provide desirable prediction accuracy for quantitative traits, with universal applications under wide genetic backgrounds in crops. The development of such platforms faces serious challenges at both the technological level due to cost ineffectiveness, and the knowledge level due to large genotype- phenotype gaps in crop plants. It is expected that such genotyping platforms will be achieved in the next ten years in major crops in consideration of (a) rapid development in gene discovery of important traits, (b) deepened understanding of quantitative traits through new analytical models and population designs, (c) integration of multi-layer -omics data leading to identification of genes and pathways responsible for important breeding traits, and (d) improvement in cost effectiveness of large-scale genotyping. Crop breeding chips and genotyping platforms will provide unprecedented opportunities to accelerate the development of cultivars with desired yield potential, quality, and enhanced adaptation to mitigate the effects of climate change.
文摘A detailed understanding of genetic architecture of mRNA expression by millions of genetic variants is important for studying quantitative trait variation. In this study, we identified 1.25M SNPs with a minor allele frequency greater than 0.05 by combining reduced genome sequencing (GBS), high- density array technologies (600K), and previous deep RNA-sequencing data from 368 diverse inbred lines of maize. The balanced allelic frequencies and distributions in a relatively large and diverse natural panel helped to identify expression quantitative trait loci (eQTLs) associated with more than 18 000 genes (63.4% of tested genes). We found that distant eQTLs were more frequent (~75% of all eQTLs) across the whole genome. Thirteen novel associated loci affecting maize kernel oil concentration were identified using the new dataset, among which one intergenic locus affected the kernel oil variation by controlling expression of three other known oil-related genes. Altogether, this study provides resources for expanding our understanding of cellular regulatory mechanisms of transcriptome variation and the landscape of functional variants within the maize genome, thereby enhancing the understanding of quantitative variations.