期刊文献+
共找到38篇文章
< 1 2 >
每页显示 20 50 100
The (G'/G, 1/G)-expansion method and its application to travelling wave solutions of the Zakharov equations 被引量:13
1
作者 LI Ling-xiao LI Er-qiang WANG Ming-liang 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2010年第4期454-462,共9页
The (G'/G, 1/G)-expansion method for finding exact travelling wave solutions of nonlinear evolution equations, which can be thought of as an extension of the (G'/G)-expansion method proposed recently, is present... The (G'/G, 1/G)-expansion method for finding exact travelling wave solutions of nonlinear evolution equations, which can be thought of as an extension of the (G'/G)-expansion method proposed recently, is presented. By using this method abundant travelling wave so- lutions with arbitrary parameters of the Zakharov equations are successfully obtained. When the parameters are replaced by special values, the well-known solitary wave solutions of the equations are rediscovered from the travelling waves. 展开更多
关键词 The g /g 1/g)-expansion method travelling wave solutions homogeneous balance solitary wave solutions Zakharov equations.
下载PDF
用(1/G)-展开法求修正Kawahara方程的孤立波解 被引量:8
2
作者 李灵晓 李二强 《河南科技大学学报(自然科学版)》 CAS 北大核心 2009年第5期78-81,共4页
利用(1/G)-展开法,借助于计算机代数系统M athem atica,获得了修正Kawahara方程的孤立波解,这里的G=G(ξ)是一阶线性常微分方程的解,(1/G)-展开法可看作是(G′/G)-展开法的一种特殊情形。
关键词 (1/g)-展开法 修正Kawahara方程 孤立波解 齐次平衡
下载PDF
(G'/G,1/G)-展开法在求解非线性演化方程中的应用 被引量:5
3
作者 李保安 李灵晓 《河南科技大学学报(自然科学版)》 CAS 北大核心 2015年第3期90-95,10,共6页
(G'/G,1/G)-展开法是求解数学物理问题中非线性演化方程新行波解的一种直接而有效的方法,可以看作是(G'/G)-展开法的扩展方法。利用该方法,Kd V方程和Burgers方程的含任意参数的新行波解被成功求解。当参数赋以特殊值时,从行波... (G'/G,1/G)-展开法是求解数学物理问题中非线性演化方程新行波解的一种直接而有效的方法,可以看作是(G'/G)-展开法的扩展方法。利用该方法,Kd V方程和Burgers方程的含任意参数的新行波解被成功求解。当参数赋以特殊值时,从行波解中可以获得著名的孤立波解。 展开更多
关键词 (g'/g 1/g)-展开法 行波解 孤立波解 KDV方程 BURgERS方程
下载PDF
一类广义时空分数阶耦合Zakharov方程组新的解析解
4
作者 洪宝剑 朱永康 +1 位作者 瞿新凯 田鑫尧 《安徽大学学报(自然科学版)》 CAS 北大核心 2024年第6期21-29,共9页
通过修正的(G'/G,1/G)-展开法,借助Mathematica软件,研究了一类在激光物理、等离子体物理等领域具有重要应用的广义时空分数阶耦合Zakharov方程组,求出了其一系列新的复合形式的解析解,这些解对于揭示高频波和低频波之间的非线性自... 通过修正的(G'/G,1/G)-展开法,借助Mathematica软件,研究了一类在激光物理、等离子体物理等领域具有重要应用的广义时空分数阶耦合Zakharov方程组,求出了其一系列新的复合形式的解析解,这些解对于揭示高频波和低频波之间的非线性自相互作用,强湍流效应中Langmuir场的振幅、电磁波强度以及调幅的不稳定性演化过程具有重要意义.通过绘制出部分解对应的2,3维分布图及密度图,直观展示了相关物理量的演化过程,这些解丰富、简化和发展了已有的结果. 展开更多
关键词 Atangana-Baleanu-Riemann分数阶导数 耦合Zakharov方程组 修正的(g'/g 1/g)-展开法 精确解 Mittag-Leffler函数
下载PDF
不稳定非线性Schrodinger方程新精确解 被引量:3
5
作者 马志民 孙峪怀 《南昌大学学报(理科版)》 CAS 北大核心 2020年第1期1-5,共5页
构造精确解是研究非线性演化方程的一个重要分支.利用(1/G′)和(1/G)-展开方法,借助符号计算系统-Maple,构造了不稳定非线性Schr?dinger方程新的精确解。
关键词 不稳定非线性Schrodinger方程 (1/g′)-展开方法 (1/g)-展开方法 精确解
下载PDF
Further investigations to extract abundant new exact traveling wave solutions of some NLEEs 被引量:3
6
作者 M.Mamun Miah Aly R.Seadawy +1 位作者 H.M.Shahadat Ali M.Ali Akbar 《Journal of Ocean Engineering and Science》 SCIE 2019年第4期387-394,共8页
In this study,we implement the generalized(G/G)-expansion method established by Wang et al.to examine wave solutions to some nonlinear evolution equations.The method,known as the double(G/G,1/G)-expansion method is ... In this study,we implement the generalized(G/G)-expansion method established by Wang et al.to examine wave solutions to some nonlinear evolution equations.The method,known as the double(G/G,1/G)-expansion method is used to establish abundant new and further general exact wave solutions to the(3+1)-dimensional Jimbo-Miwa equation,the(3+1)-dimensional Kadomtsev-Petviashvili equation and symmetric regularized long wave equation.The solutions are extracted in terms of hyperbolic function,trigonometric function and rational function.The solitary wave solutions are constructed from the obtained traveling wave solutions if the parameters received some definite values.Graphs of the solutions are also depicted to describe the phenomena apparently and the shapes of the obtained solutions are singular periodic,anti-kink,singular soliton,singular anti-bell shape,compaction etc.This method is straightforward,compact and reliable and gives huge new closed form traveling wave solutions of nonlinear evolution equations in ocean engineering. 展开更多
关键词 Exact traveling wave solutions (g/g 1/g)-expansion method (3+1)-dimensional Jimbo-Miwa equation (3+1)-dimensional Kadomtsev-Petviashvili equation Symmetric regularized long wave equation
原文传递
Exact Solutions to (2+1)-Dimensional Kaup-Kupershmidt Equation 被引量:3
7
作者 LU Hai-Lin LIU Xi-Qiang 《Communications in Theoretical Physics》 SCIE CAS CSCD 2009年第11期795-800,共6页
In this paper, by using the symmetry method, the relationships between new explicit solutions and old ones of the (2+1)-dimensional Kaup-Kupershmidt (KK) equation are presented. We successfully obtain more genera... In this paper, by using the symmetry method, the relationships between new explicit solutions and old ones of the (2+1)-dimensional Kaup-Kupershmidt (KK) equation are presented. We successfully obtain more general exact travelling wave solutions for (2+ 1)-dimensional KK equation by the symmetry method and the (G1/G)-expansion method. Consequently, we find some new solutions of (2+1)-dimensional KK equation, including similarity solutions, solitary wave solutions, and periodic solutions. 展开更多
关键词 (2+1)-dimensional Kaup-Kupershmidt equation the symmetry method the g1/g)-expansion method exact solutions
下载PDF
对称正则长波方程的精确行波解 被引量:1
8
作者 黄雪 刘小华 +1 位作者 朱引 曾职云 《新乡学院学报》 2023年第6期8-14,19,共8页
利用(G'/G,1/G)展开法导出了对称正则长波方程的双曲函数解、有理函数解和三角函数解,给出了解在具体参数值下的2D和3D效果图以及解的性态,验证了所求的解均满足方程。
关键词 对称正则长波方程 双曲函数解 三角函数解 有理函数解 (g'/g 1/g)展开法
下载PDF
New applications of the two variable (G ′/ G,1/ G)-expansion method for closed form traveling wave solutions of integro-differential equations 被引量:2
9
作者 M.Mamun Miah H.M.Shahadat Ali +1 位作者 M.Ali Akbar Aly R.Seadawy 《Journal of Ocean Engineering and Science》 SCIE 2019年第2期132-143,共12页
Most fundamental themes in mathematical physics and modern engineering are investigated by the closed form traveling wave solutions of nonlinear evolution equations.In our research,we ascertain abundant new closed for... Most fundamental themes in mathematical physics and modern engineering are investigated by the closed form traveling wave solutions of nonlinear evolution equations.In our research,we ascertain abundant new closed form traveling wave solution of the nonlinear integro-differential equations via Ito equation,integro-differential Sawada-Kotera equation,first integro-differential KP hierarchy equation and second integro-differential KP hierarchy equation by two variable(G/G,1/G)-expansion method with the help of computer package like Mathematica.Some shape of solutions like,bell profile solution,anti-king profile solution,soliton profile solution,periodic profile solution etc.are obtain in this investigation.Trigonometric function solution,hyperbolic function solution and rational function solution are established by using our eminent method and comparing with our results to all of the well-known results which are given in the literature.By means of free parameters,plentiful solitary solutions are derived from the exact traveling wave solutions.The method can be easier and more applicable to investigate such type of nonlinear evolution models. 展开更多
关键词 The two variable(g/g 1/g)-expansion method Travelling wave solutions Integro-differential ito equation Integro-differential Sawada-Kotera equation First integro-differential KP hierarchy equation Second integro-differential KP hierarchy equation.
原文传递
Analytical behavior of weakly dispersive surface and internal waves in the ocean 被引量:2
10
作者 Mohammad Asif Arefin Md.Abu Saeed +1 位作者 M.Ali Akbar M.Hafiz Uddin 《Journal of Ocean Engineering and Science》 SCIE 2022年第4期305-312,共8页
The(2+1)-dimensional interaction of a Riemann wave propagating along the y-axis with a long wave along the x-axis is described by the space-time fractional Calogero-Degasperis(CD)and fractional poten-tial Kadomstev-Pe... The(2+1)-dimensional interaction of a Riemann wave propagating along the y-axis with a long wave along the x-axis is described by the space-time fractional Calogero-Degasperis(CD)and fractional poten-tial Kadomstev-Petviashvili(PKP)equation.It can be modeled according to the Hamiltonian structure,the lax pair with the non-isospectral problem,and the pain level property.The proposed equations are widely used in beachfront ocean and coastal engineering to describe the propagation of shallow-water waves,demonstrate the propagation of waves in dissipative and nonlinear media,and reveal the propagation of waves in dissipative and nonlinear media.In this paper,we have established further exact solutions to the nonlinear fractional partial differential equation(NLFPDEs),namely the space-time fractional CD and fractional PKP equations using the modified Rieman-Liouville fractional derivative of Jumarie through the two variable(G/G,1/G)-expansion method.As far as trigonometric,hyperbolic,and rational function so-lutions containing parameters are concerned,solutions are acquired when unique characteristics are as-signed to the parameters.Subsequently,the solitary wave solutions are generated from the solutions of the traveling wave.It is important to observe that this method is a realistic,convenient,well-organized,and ground-breaking strategy for solving various types of NLFPDEs. 展开更多
关键词 Two variable(g/g 1/g)-expansion method Exact solution Traveling wave solutions Solitary wave solutions The space-time fractional CD equation The space-time fractional PKP equation
原文传递
构造非线性偏微分方程精确解的(1/G)-展开法 被引量:2
11
作者 马志民 孙峪怀 《重庆理工大学学报(自然科学)》 CAS 北大核心 2020年第3期240-243,共4页
精确解是研究非线性偏微分方程的重要课题。许多自然现象都可以由非线性偏微分方程的精确解描述。利用(1/G)-展开法,并借助符号计算系统Maple,获得了Sharma-Tasso-Olver方程和Ablowitz-Kaup-Newell-Segur水波方程的精确解,其中包括一些... 精确解是研究非线性偏微分方程的重要课题。许多自然现象都可以由非线性偏微分方程的精确解描述。利用(1/G)-展开法,并借助符号计算系统Maple,获得了Sharma-Tasso-Olver方程和Ablowitz-Kaup-Newell-Segur水波方程的精确解,其中包括一些新的结果。未来这一方法也可用来构造其他非线性偏微分方程的精确解。 展开更多
关键词 Sharma-Tasso-Olver方程 Ablowitz-Kaup-Newell-Segur水波方程 (1/g)-展开法 精确解
下载PDF
New sub-equation method to construct solitons and other solutions for perturbed nonlinear Schrödinger equation with Kerr law nonlinearity in optical fiber materials 被引量:1
12
作者 Elsayed M.E.Zayed Abdul-Ghani Al-Nowehy Reham M.A.Shohib 《Journal of Ocean Engineering and Science》 SCIE 2019年第1期14-23,共10页
In a previous work,Zayed and Al-Nowehy have applied the Riccati equation mapping method combined with the generalized extended(G/G)-expansion method and found new exact solutions of the nonlinear KPP equation.In the ... In a previous work,Zayed and Al-Nowehy have applied the Riccati equation mapping method combined with the generalized extended(G/G)-expansion method and found new exact solutions of the nonlinear KPP equation.In the present article,we propose a different method,namely,a new sub-equation method consists of the Riccati equation mapping method and the(G/G,1/G)-expansion method to find new exact solutions of the perturbed nonlinear Schrödinger equation with Kerr law nonlinearity in optical fiber materials.This proposed method is not found elsewhere.Hyperbolic,trigonometric and rational function solutions are given.New solutions of the generalized Riccati equation are presented for the first time which are not reported previously.The solutions of the given nonlinear equation can be applied in ocean engineering for calculating the height of tides in the ocean. 展开更多
关键词 New sub-equation method (g/g 1/g)-expansion method generalized Riccati equation mapping method Perturbed nonlinear Schrödinger equation Exact solutions.
原文传递
A study on stochastic longitudinal wave equation in a magneto-electro-elastic annular bar to find the analytical solutions
13
作者 M Mamun Miah M Ashik Iqbal M S Osman 《Communications in Theoretical Physics》 SCIE CAS CSCD 2023年第8期78-86,共9页
In this paper,we set up dynamic solitary perturb solutions of a unidirectional stochastic longitudinal wave equation in a magneto-electro-elastic annular bar by a feasible,useful,and influential method named the dual(... In this paper,we set up dynamic solitary perturb solutions of a unidirectional stochastic longitudinal wave equation in a magneto-electro-elastic annular bar by a feasible,useful,and influential method named the dual(G’/G,1/G)-expansion method.Computer software,like Mathematica,is used to complete this discussion.The obtained solutions of the proposed equation are classified into trigonometric,hyperbolic,and rational types which play an important role in searching for numerous scientific events.The technique employed here is an extension of the(G’/G)-expansion technique for finding all previously discovered solutions.To illustrate our findings more clearly,we provide 2D and 3D charts of the various recovery methods.We then contrasted our findings with those of past solutions.The graphical illustrations of the acquired solutions are singular periodic solitons and kink solitons which are added at the end of this paper. 展开更多
关键词 dual(g'/g 1/g)-expansion method stochastic longitudinal wave equation dynamic solitary perturb solutions magneto-electro-elastic annular bar
原文传递
一类非线性发展方程的显式精确解 被引量:1
14
作者 陈自高 蔡洪涛 《华北水利水电学院学报》 2011年第1期150-153,共4页
应用(1/G)-展开法,借助于计算机系统Mathematica和齐次平衡原则,获得了一类非线性发展方程新的显式精确解,其中包括一般形式的行波解、扭状正则孤立波解和奇异孤立波解.
关键词 (1/g)-展开法 齐次平衡原则 行波解 孤立波解
下载PDF
应用(1/G)-展开法求解五阶KdV方程(英文) 被引量:1
15
作者 李灵晓 李二强 王明亮 《应用数学》 CSCD 北大核心 2011年第4期699-704,共6页
本篇论文首次提出(1/G)-展开法,用于求解非线性演化方程的行波解.将该法应用于五阶KdV方程的求解,当参数满足一定条件时,该方程可化为Sawada-Kotera(SK)方程、Caudrey-Dodd-Gibbon(CDG)方程、Kaup-Kupershmidt(KK)方程、Lax方程和Ito方... 本篇论文首次提出(1/G)-展开法,用于求解非线性演化方程的行波解.将该法应用于五阶KdV方程的求解,当参数满足一定条件时,该方程可化为Sawada-Kotera(SK)方程、Caudrey-Dodd-Gibbon(CDG)方程、Kaup-Kupershmidt(KK)方程、Lax方程和Ito方程.其解可被表示为含两个任意参数的双曲函数解和三角函数解,作为示例,文中仅给出了SK方程和Ito方程的行波解.(1/G)-展开法具有直接、简捷与基本的特点,可以适用于数学物理中其它非线性演化方程的求解. 展开更多
关键词 (1/g)-展开法 行波解 五阶KDV方程 齐次平衡
下载PDF
微结构固体材料中一个非线性发展方程的精确孤立波解 被引量:1
16
作者 高克权 《河南科技大学学报(自然科学版)》 CAS 北大核心 2010年第3期82-84,共3页
借助于新近提出的(1/G)-展开法,研究了描述微结构固体材料中波动传播的一个非线性发展方程,并得到了该方程的孤立波解,从而验证与充实了美国佛罗里达中央大学的Leto J A和Choudhury S R在2009年用定性理论讨论该方程所得结论的正确性。
关键词 (1/g)-展开法 非线性发展方程 孤立波 微结构材料
下载PDF
基于光纤中光孤子传输模型方程的求解和分析
17
作者 方晓静 房少梅 《佛山科学技术学院学报(自然科学版)》 CAS 2018年第2期7-12,共6页
基于(G'/G,1/G)展开法,通过行波变换,结合Maple数学软件,求解了光纤通讯模型中一般形式的非线性Schrdinger方程的孤立波解,并讨论分析了相应的物理意义。
关键词 孤立波解 SCHRODINgER方程 (g'/g 1/g)展开法
下载PDF
Investigation of adequate closed form travelling wave solution to the space-time fractional non-linear evolution equations
18
作者 Mohammad Asif Arefin M.Ayesha Khatun +1 位作者 M.Hafiz Uddin Mustafa Inc 《Journal of Ocean Engineering and Science》 SCIE 2022年第3期292-303,共12页
This work aims to construct exact solutions for the space-time fractional(2+1)-dimensional dispersive longwave(DLW)equation and approximate long water wave equation(ALW)utilizing the twovariable(G′/G,1/G)-expansion m... This work aims to construct exact solutions for the space-time fractional(2+1)-dimensional dispersive longwave(DLW)equation and approximate long water wave equation(ALW)utilizing the twovariable(G′/G,1/G)-expansion method and the modified Riemann-Liouville fractional derivative.The recommended equations play a significant role to describe the travel of the shallow water wave.The fractional complex transform is used to convert fractional differential equations into ordinary differential equations.Several wave solutions have been successfully achieved using the proposed approach and the symbolic computer Maple package.The Maple package program was used to set up and validate all of the computations in this investigation.By choosing particular values of the embedded parameters,we pro-duce multiple periodic solutions,periodic wave solutions,single soliton solutions,kink wave solutions,and more forms of soliton solutions.The achieved solutions might be useful to comprehend nonlinear phenomena.It is worth noting that the implemented method for solving nonlinear fractional partial dif-ferential equations(NLFPDEs)is efficient,and simple to find further and new-fangled solutions in the arena of mathematical physics and coastal engineering. 展开更多
关键词 Riemann-Liouville fractional derivative Space-time fractional(2+1)-dimensional dispersive long wave equation Approximate long water wave equation Wave transformation The two-variable(g′/g 1/g)-expansion method
原文传递
Exact Traveling Wave Solutions for Higher Order Nonlinear Schrodinger Equations in Optics by Using the (G'/G,1/G)-expansion Method
19
作者 ZAYED E. M. E. ALURRFI K. A. E. 《Journal of Partial Differential Equations》 CSCD 2015年第4期332-357,共26页
The propagation of the optical solitons is usually governed by the nonlinear Schrodinger equations. In this article, the two variable (G'/G,1/G)-expansion method is employed to construct exact traveling wave soluti... The propagation of the optical solitons is usually governed by the nonlinear Schrodinger equations. In this article, the two variable (G'/G,1/G)-expansion method is employed to construct exact traveling wave solutions with parameters of two higher order nonlinear Schrodinger equations describing the propagation of femtosecond pulses in nonlinear optical fibers. When the parameters are replaced by special values, the well-known solitary wave solutions of these equations rediscovered from the traveling waves. This method can be thought of as the generalization of well-known original (G'/G)-expansion method proposed by M. Wang et al. It is shown that the two variable (G'/G,1/G)-expansion method provides a more powerful mathematical tool for solving many other nonlinear PDEs in mathematical physics. 展开更多
关键词 The two variable g'/g 1/g)-expansion method Schrodinger equations exact traveling wave solutions Solitary wave solutions.
原文传递
一类非线性发展方程的显式精确解
20
作者 陈自高 张愿章 《贵州大学学报(自然科学版)》 2010年第6期14-17,共4页
应用(1/G)-展开法,并借助于计算机系统Mathematica和齐次平衡原则,获得了一类非线性发展方程新的显式精确解,其中包括一般形式的行波解、扭状正则孤立波解和奇异孤立波解。
关键词 (1/g)-展开法 齐次平衡原则 行波解 孤立波解
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部