The (G'/G, 1/G)-expansion method for finding exact travelling wave solutions of nonlinear evolution equations, which can be thought of as an extension of the (G'/G)-expansion method proposed recently, is present...The (G'/G, 1/G)-expansion method for finding exact travelling wave solutions of nonlinear evolution equations, which can be thought of as an extension of the (G'/G)-expansion method proposed recently, is presented. By using this method abundant travelling wave so- lutions with arbitrary parameters of the Zakharov equations are successfully obtained. When the parameters are replaced by special values, the well-known solitary wave solutions of the equations are rediscovered from the travelling waves.展开更多
In this study,we implement the generalized(G/G)-expansion method established by Wang et al.to examine wave solutions to some nonlinear evolution equations.The method,known as the double(G/G,1/G)-expansion method is ...In this study,we implement the generalized(G/G)-expansion method established by Wang et al.to examine wave solutions to some nonlinear evolution equations.The method,known as the double(G/G,1/G)-expansion method is used to establish abundant new and further general exact wave solutions to the(3+1)-dimensional Jimbo-Miwa equation,the(3+1)-dimensional Kadomtsev-Petviashvili equation and symmetric regularized long wave equation.The solutions are extracted in terms of hyperbolic function,trigonometric function and rational function.The solitary wave solutions are constructed from the obtained traveling wave solutions if the parameters received some definite values.Graphs of the solutions are also depicted to describe the phenomena apparently and the shapes of the obtained solutions are singular periodic,anti-kink,singular soliton,singular anti-bell shape,compaction etc.This method is straightforward,compact and reliable and gives huge new closed form traveling wave solutions of nonlinear evolution equations in ocean engineering.展开更多
In this paper, by using the symmetry method, the relationships between new explicit solutions and old ones of the (2+1)-dimensional Kaup-Kupershmidt (KK) equation are presented. We successfully obtain more genera...In this paper, by using the symmetry method, the relationships between new explicit solutions and old ones of the (2+1)-dimensional Kaup-Kupershmidt (KK) equation are presented. We successfully obtain more general exact travelling wave solutions for (2+ 1)-dimensional KK equation by the symmetry method and the (G1/G)-expansion method. Consequently, we find some new solutions of (2+1)-dimensional KK equation, including similarity solutions, solitary wave solutions, and periodic solutions.展开更多
Most fundamental themes in mathematical physics and modern engineering are investigated by the closed form traveling wave solutions of nonlinear evolution equations.In our research,we ascertain abundant new closed for...Most fundamental themes in mathematical physics and modern engineering are investigated by the closed form traveling wave solutions of nonlinear evolution equations.In our research,we ascertain abundant new closed form traveling wave solution of the nonlinear integro-differential equations via Ito equation,integro-differential Sawada-Kotera equation,first integro-differential KP hierarchy equation and second integro-differential KP hierarchy equation by two variable(G/G,1/G)-expansion method with the help of computer package like Mathematica.Some shape of solutions like,bell profile solution,anti-king profile solution,soliton profile solution,periodic profile solution etc.are obtain in this investigation.Trigonometric function solution,hyperbolic function solution and rational function solution are established by using our eminent method and comparing with our results to all of the well-known results which are given in the literature.By means of free parameters,plentiful solitary solutions are derived from the exact traveling wave solutions.The method can be easier and more applicable to investigate such type of nonlinear evolution models.展开更多
The(2+1)-dimensional interaction of a Riemann wave propagating along the y-axis with a long wave along the x-axis is described by the space-time fractional Calogero-Degasperis(CD)and fractional poten-tial Kadomstev-Pe...The(2+1)-dimensional interaction of a Riemann wave propagating along the y-axis with a long wave along the x-axis is described by the space-time fractional Calogero-Degasperis(CD)and fractional poten-tial Kadomstev-Petviashvili(PKP)equation.It can be modeled according to the Hamiltonian structure,the lax pair with the non-isospectral problem,and the pain level property.The proposed equations are widely used in beachfront ocean and coastal engineering to describe the propagation of shallow-water waves,demonstrate the propagation of waves in dissipative and nonlinear media,and reveal the propagation of waves in dissipative and nonlinear media.In this paper,we have established further exact solutions to the nonlinear fractional partial differential equation(NLFPDEs),namely the space-time fractional CD and fractional PKP equations using the modified Rieman-Liouville fractional derivative of Jumarie through the two variable(G/G,1/G)-expansion method.As far as trigonometric,hyperbolic,and rational function so-lutions containing parameters are concerned,solutions are acquired when unique characteristics are as-signed to the parameters.Subsequently,the solitary wave solutions are generated from the solutions of the traveling wave.It is important to observe that this method is a realistic,convenient,well-organized,and ground-breaking strategy for solving various types of NLFPDEs.展开更多
In a previous work,Zayed and Al-Nowehy have applied the Riccati equation mapping method combined with the generalized extended(G/G)-expansion method and found new exact solutions of the nonlinear KPP equation.In the ...In a previous work,Zayed and Al-Nowehy have applied the Riccati equation mapping method combined with the generalized extended(G/G)-expansion method and found new exact solutions of the nonlinear KPP equation.In the present article,we propose a different method,namely,a new sub-equation method consists of the Riccati equation mapping method and the(G/G,1/G)-expansion method to find new exact solutions of the perturbed nonlinear Schrödinger equation with Kerr law nonlinearity in optical fiber materials.This proposed method is not found elsewhere.Hyperbolic,trigonometric and rational function solutions are given.New solutions of the generalized Riccati equation are presented for the first time which are not reported previously.The solutions of the given nonlinear equation can be applied in ocean engineering for calculating the height of tides in the ocean.展开更多
In this paper,we set up dynamic solitary perturb solutions of a unidirectional stochastic longitudinal wave equation in a magneto-electro-elastic annular bar by a feasible,useful,and influential method named the dual(...In this paper,we set up dynamic solitary perturb solutions of a unidirectional stochastic longitudinal wave equation in a magneto-electro-elastic annular bar by a feasible,useful,and influential method named the dual(G’/G,1/G)-expansion method.Computer software,like Mathematica,is used to complete this discussion.The obtained solutions of the proposed equation are classified into trigonometric,hyperbolic,and rational types which play an important role in searching for numerous scientific events.The technique employed here is an extension of the(G’/G)-expansion technique for finding all previously discovered solutions.To illustrate our findings more clearly,we provide 2D and 3D charts of the various recovery methods.We then contrasted our findings with those of past solutions.The graphical illustrations of the acquired solutions are singular periodic solitons and kink solitons which are added at the end of this paper.展开更多
This work aims to construct exact solutions for the space-time fractional(2+1)-dimensional dispersive longwave(DLW)equation and approximate long water wave equation(ALW)utilizing the twovariable(G′/G,1/G)-expansion m...This work aims to construct exact solutions for the space-time fractional(2+1)-dimensional dispersive longwave(DLW)equation and approximate long water wave equation(ALW)utilizing the twovariable(G′/G,1/G)-expansion method and the modified Riemann-Liouville fractional derivative.The recommended equations play a significant role to describe the travel of the shallow water wave.The fractional complex transform is used to convert fractional differential equations into ordinary differential equations.Several wave solutions have been successfully achieved using the proposed approach and the symbolic computer Maple package.The Maple package program was used to set up and validate all of the computations in this investigation.By choosing particular values of the embedded parameters,we pro-duce multiple periodic solutions,periodic wave solutions,single soliton solutions,kink wave solutions,and more forms of soliton solutions.The achieved solutions might be useful to comprehend nonlinear phenomena.It is worth noting that the implemented method for solving nonlinear fractional partial dif-ferential equations(NLFPDEs)is efficient,and simple to find further and new-fangled solutions in the arena of mathematical physics and coastal engineering.展开更多
The propagation of the optical solitons is usually governed by the nonlinear Schrodinger equations. In this article, the two variable (G'/G,1/G)-expansion method is employed to construct exact traveling wave soluti...The propagation of the optical solitons is usually governed by the nonlinear Schrodinger equations. In this article, the two variable (G'/G,1/G)-expansion method is employed to construct exact traveling wave solutions with parameters of two higher order nonlinear Schrodinger equations describing the propagation of femtosecond pulses in nonlinear optical fibers. When the parameters are replaced by special values, the well-known solitary wave solutions of these equations rediscovered from the traveling waves. This method can be thought of as the generalization of well-known original (G'/G)-expansion method proposed by M. Wang et al. It is shown that the two variable (G'/G,1/G)-expansion method provides a more powerful mathematical tool for solving many other nonlinear PDEs in mathematical physics.展开更多
基金Supported by the International Cooperation and Exchanges Foundation of Henan Province (084300510060)the Youth Science Foundation of Henan University of Science and Technology of China (2008QN026)
文摘The (G'/G, 1/G)-expansion method for finding exact travelling wave solutions of nonlinear evolution equations, which can be thought of as an extension of the (G'/G)-expansion method proposed recently, is presented. By using this method abundant travelling wave so- lutions with arbitrary parameters of the Zakharov equations are successfully obtained. When the parameters are replaced by special values, the well-known solitary wave solutions of the equations are rediscovered from the travelling waves.
文摘In this study,we implement the generalized(G/G)-expansion method established by Wang et al.to examine wave solutions to some nonlinear evolution equations.The method,known as the double(G/G,1/G)-expansion method is used to establish abundant new and further general exact wave solutions to the(3+1)-dimensional Jimbo-Miwa equation,the(3+1)-dimensional Kadomtsev-Petviashvili equation and symmetric regularized long wave equation.The solutions are extracted in terms of hyperbolic function,trigonometric function and rational function.The solitary wave solutions are constructed from the obtained traveling wave solutions if the parameters received some definite values.Graphs of the solutions are also depicted to describe the phenomena apparently and the shapes of the obtained solutions are singular periodic,anti-kink,singular soliton,singular anti-bell shape,compaction etc.This method is straightforward,compact and reliable and gives huge new closed form traveling wave solutions of nonlinear evolution equations in ocean engineering.
基金Supported by the Natural Science Foundation of Shandong Province in China under Grant No.Q2005A01
文摘In this paper, by using the symmetry method, the relationships between new explicit solutions and old ones of the (2+1)-dimensional Kaup-Kupershmidt (KK) equation are presented. We successfully obtain more general exact travelling wave solutions for (2+ 1)-dimensional KK equation by the symmetry method and the (G1/G)-expansion method. Consequently, we find some new solutions of (2+1)-dimensional KK equation, including similarity solutions, solitary wave solutions, and periodic solutions.
文摘Most fundamental themes in mathematical physics and modern engineering are investigated by the closed form traveling wave solutions of nonlinear evolution equations.In our research,we ascertain abundant new closed form traveling wave solution of the nonlinear integro-differential equations via Ito equation,integro-differential Sawada-Kotera equation,first integro-differential KP hierarchy equation and second integro-differential KP hierarchy equation by two variable(G/G,1/G)-expansion method with the help of computer package like Mathematica.Some shape of solutions like,bell profile solution,anti-king profile solution,soliton profile solution,periodic profile solution etc.are obtain in this investigation.Trigonometric function solution,hyperbolic function solution and rational function solution are established by using our eminent method and comparing with our results to all of the well-known results which are given in the literature.By means of free parameters,plentiful solitary solutions are derived from the exact traveling wave solutions.The method can be easier and more applicable to investigate such type of nonlinear evolution models.
文摘The(2+1)-dimensional interaction of a Riemann wave propagating along the y-axis with a long wave along the x-axis is described by the space-time fractional Calogero-Degasperis(CD)and fractional poten-tial Kadomstev-Petviashvili(PKP)equation.It can be modeled according to the Hamiltonian structure,the lax pair with the non-isospectral problem,and the pain level property.The proposed equations are widely used in beachfront ocean and coastal engineering to describe the propagation of shallow-water waves,demonstrate the propagation of waves in dissipative and nonlinear media,and reveal the propagation of waves in dissipative and nonlinear media.In this paper,we have established further exact solutions to the nonlinear fractional partial differential equation(NLFPDEs),namely the space-time fractional CD and fractional PKP equations using the modified Rieman-Liouville fractional derivative of Jumarie through the two variable(G/G,1/G)-expansion method.As far as trigonometric,hyperbolic,and rational function so-lutions containing parameters are concerned,solutions are acquired when unique characteristics are as-signed to the parameters.Subsequently,the solitary wave solutions are generated from the solutions of the traveling wave.It is important to observe that this method is a realistic,convenient,well-organized,and ground-breaking strategy for solving various types of NLFPDEs.
文摘In a previous work,Zayed and Al-Nowehy have applied the Riccati equation mapping method combined with the generalized extended(G/G)-expansion method and found new exact solutions of the nonlinear KPP equation.In the present article,we propose a different method,namely,a new sub-equation method consists of the Riccati equation mapping method and the(G/G,1/G)-expansion method to find new exact solutions of the perturbed nonlinear Schrödinger equation with Kerr law nonlinearity in optical fiber materials.This proposed method is not found elsewhere.Hyperbolic,trigonometric and rational function solutions are given.New solutions of the generalized Riccati equation are presented for the first time which are not reported previously.The solutions of the given nonlinear equation can be applied in ocean engineering for calculating the height of tides in the ocean.
文摘In this paper,we set up dynamic solitary perturb solutions of a unidirectional stochastic longitudinal wave equation in a magneto-electro-elastic annular bar by a feasible,useful,and influential method named the dual(G’/G,1/G)-expansion method.Computer software,like Mathematica,is used to complete this discussion.The obtained solutions of the proposed equation are classified into trigonometric,hyperbolic,and rational types which play an important role in searching for numerous scientific events.The technique employed here is an extension of the(G’/G)-expansion technique for finding all previously discovered solutions.To illustrate our findings more clearly,we provide 2D and 3D charts of the various recovery methods.We then contrasted our findings with those of past solutions.The graphical illustrations of the acquired solutions are singular periodic solitons and kink solitons which are added at the end of this paper.
基金the Natural Science Foundation of Education Department of Henan Province of China(2011B110013)the Youth Science Foundation of Henan University of Science and Technology(2008QN026)
文摘This work aims to construct exact solutions for the space-time fractional(2+1)-dimensional dispersive longwave(DLW)equation and approximate long water wave equation(ALW)utilizing the twovariable(G′/G,1/G)-expansion method and the modified Riemann-Liouville fractional derivative.The recommended equations play a significant role to describe the travel of the shallow water wave.The fractional complex transform is used to convert fractional differential equations into ordinary differential equations.Several wave solutions have been successfully achieved using the proposed approach and the symbolic computer Maple package.The Maple package program was used to set up and validate all of the computations in this investigation.By choosing particular values of the embedded parameters,we pro-duce multiple periodic solutions,periodic wave solutions,single soliton solutions,kink wave solutions,and more forms of soliton solutions.The achieved solutions might be useful to comprehend nonlinear phenomena.It is worth noting that the implemented method for solving nonlinear fractional partial dif-ferential equations(NLFPDEs)is efficient,and simple to find further and new-fangled solutions in the arena of mathematical physics and coastal engineering.
文摘The propagation of the optical solitons is usually governed by the nonlinear Schrodinger equations. In this article, the two variable (G'/G,1/G)-expansion method is employed to construct exact traveling wave solutions with parameters of two higher order nonlinear Schrodinger equations describing the propagation of femtosecond pulses in nonlinear optical fibers. When the parameters are replaced by special values, the well-known solitary wave solutions of these equations rediscovered from the traveling waves. This method can be thought of as the generalization of well-known original (G'/G)-expansion method proposed by M. Wang et al. It is shown that the two variable (G'/G,1/G)-expansion method provides a more powerful mathematical tool for solving many other nonlinear PDEs in mathematical physics.