The Laser AltiMeter (LAM), as one of the main payloads of Chang'E-1 probe, is used to measure the topography of the lunar surface. It performed the first measurement at 02:22 on November 28th, 2007. Up to December...The Laser AltiMeter (LAM), as one of the main payloads of Chang'E-1 probe, is used to measure the topography of the lunar surface. It performed the first measurement at 02:22 on November 28th, 2007. Up to December 4th 2008, the total number of measurements was approximately 9.12 million, covering the whole surface of the Moon. Using the LAM data, we constructed a global lunar Digtal Elevation Model (DEM) with 3 km spatial resolution. The model shows pronounced morphological characteristics, legible and vivid details of the lunar surface. The plane positioning accuracy of the DEM is 445 m (1σ), and the vertical accuracy is 60 m (1σ). From this DEM model, we measured the full range of the altitude difference on the lunar sur-face, which is about 19.807 km. The highest point is 10.629 km high, on a peak between crater Korolev and crater Dirichlet-Jackson at (158.656°W, 5.441°N) and the lowest point is -9.178 km in height, inside crater Antoniadi (172.413°W, 70.368°S) in the South Pole-Aitken Basin. By comparison, the DEM model of Chang'E-1 is better than the USA ULCN2005 in accuracy and resolution and is probably identical to the DEM of Japan SELENE, but the DEM of Chang'E-1 reveals a new lowest point, clearly lower than that of SELENE.展开更多
To improve our understanding of the formation and evolution of the Moon, one of the payloads onboard the Chang'e-3 (CE-3) rover is Lunar Penetrating Radar (LPR). This investigation is the first attempt to explore...To improve our understanding of the formation and evolution of the Moon, one of the payloads onboard the Chang'e-3 (CE-3) rover is Lunar Penetrating Radar (LPR). This investigation is the first attempt to explore the lunar subsurface structure by using ground penetrating radar with high resolution. We have probed the subsur- face to a depth of several hundred meters using LPR. In-orbit testing, data processing and the preliminary results are presented. These observations have revealed the con- figuration of regolith where the thickness of regolith varies from about 4 m to 6 m. In addition, one layer of lunar rock, which is about 330 m deep and might have been accumulated during the depositional hiatus of mare basalts, was detected.展开更多
This study focuses on the physical and chemical properties of surficial lunar regolith(LR)samples returned from the Moon by the Chang’E-5(CE-5)mission.Insights regarding the effect of a new sampling geological site o...This study focuses on the physical and chemical properties of surficial lunar regolith(LR)samples returned from the Moon by the Chang’E-5(CE-5)mission.Insights regarding the effect of a new sampling geological site on the surficial lunar sample CE5 C0400 were illustrated using nondestructive techniques such as laser diffractometry coupled with image analysis,X-ray computed tomography,and field emission scanning electron microscopy equipped with energy dispersive spectroscopy,and Xray diffraction combined with Rietveld refinement.From the characterization analyses,the CE-5 sampling site in the northeastern Oceanus Procellarum on the Moon yields a unique collection of relatively regular-shaped and fine basalt-dominated particles.The median grain size D_(50) is(55.24±0.96)μm,falling within the relatively low end of the range of the Apollo lunar returned samples.The coefficient of uniformity C_(u)of 15.1 and the coefficient of curvature C_(c)of 1.7 could classify CE5 C0400 to be well-graded.The minerals in CE5 C0400 comprise approximately 44.5%pyroxene,30.4%plagioclase,3.6%olivine,and6.0%ilmenite.There is a relatively low content of approximately 15.5%glass phase in the CE-5 lunar sample.From the results,we deduce that the CE-5 LR structure could have mainly resulted from micrometeoroid impacts to achieve such a high level of maturity.展开更多
Lunar Penetrating Radar (LPR) is one of the important scientific instru- ments onboard the Chang'e-3 spacecraft. Its scientific goals are the mapping of lunar regolith and detection of subsurface geologic structure...Lunar Penetrating Radar (LPR) is one of the important scientific instru- ments onboard the Chang'e-3 spacecraft. Its scientific goals are the mapping of lunar regolith and detection of subsurface geologic structures. This paper describes the goals of the mission, as well as the basic principles, design, composition and achievements of the LPR. Finally, experiments on a glacier and the lunar surface are analyzed.展开更多
文摘The Laser AltiMeter (LAM), as one of the main payloads of Chang'E-1 probe, is used to measure the topography of the lunar surface. It performed the first measurement at 02:22 on November 28th, 2007. Up to December 4th 2008, the total number of measurements was approximately 9.12 million, covering the whole surface of the Moon. Using the LAM data, we constructed a global lunar Digtal Elevation Model (DEM) with 3 km spatial resolution. The model shows pronounced morphological characteristics, legible and vivid details of the lunar surface. The plane positioning accuracy of the DEM is 445 m (1σ), and the vertical accuracy is 60 m (1σ). From this DEM model, we measured the full range of the altitude difference on the lunar sur-face, which is about 19.807 km. The highest point is 10.629 km high, on a peak between crater Korolev and crater Dirichlet-Jackson at (158.656°W, 5.441°N) and the lowest point is -9.178 km in height, inside crater Antoniadi (172.413°W, 70.368°S) in the South Pole-Aitken Basin. By comparison, the DEM model of Chang'E-1 is better than the USA ULCN2005 in accuracy and resolution and is probably identical to the DEM of Japan SELENE, but the DEM of Chang'E-1 reveals a new lowest point, clearly lower than that of SELENE.
基金Supported by the National Natural Science Foundation of China
文摘To improve our understanding of the formation and evolution of the Moon, one of the payloads onboard the Chang'e-3 (CE-3) rover is Lunar Penetrating Radar (LPR). This investigation is the first attempt to explore the lunar subsurface structure by using ground penetrating radar with high resolution. We have probed the subsur- face to a depth of several hundred meters using LPR. In-orbit testing, data processing and the preliminary results are presented. These observations have revealed the con- figuration of regolith where the thickness of regolith varies from about 4 m to 6 m. In addition, one layer of lunar rock, which is about 330 m deep and might have been accumulated during the depositional hiatus of mare basalts, was detected.
文摘This study focuses on the physical and chemical properties of surficial lunar regolith(LR)samples returned from the Moon by the Chang’E-5(CE-5)mission.Insights regarding the effect of a new sampling geological site on the surficial lunar sample CE5 C0400 were illustrated using nondestructive techniques such as laser diffractometry coupled with image analysis,X-ray computed tomography,and field emission scanning electron microscopy equipped with energy dispersive spectroscopy,and Xray diffraction combined with Rietveld refinement.From the characterization analyses,the CE-5 sampling site in the northeastern Oceanus Procellarum on the Moon yields a unique collection of relatively regular-shaped and fine basalt-dominated particles.The median grain size D_(50) is(55.24±0.96)μm,falling within the relatively low end of the range of the Apollo lunar returned samples.The coefficient of uniformity C_(u)of 15.1 and the coefficient of curvature C_(c)of 1.7 could classify CE5 C0400 to be well-graded.The minerals in CE5 C0400 comprise approximately 44.5%pyroxene,30.4%plagioclase,3.6%olivine,and6.0%ilmenite.There is a relatively low content of approximately 15.5%glass phase in the CE-5 lunar sample.From the results,we deduce that the CE-5 LR structure could have mainly resulted from micrometeoroid impacts to achieve such a high level of maturity.
基金funded by the second phase of the Chinese Lunar Exploration Program
文摘Lunar Penetrating Radar (LPR) is one of the important scientific instru- ments onboard the Chang'e-3 spacecraft. Its scientific goals are the mapping of lunar regolith and detection of subsurface geologic structures. This paper describes the goals of the mission, as well as the basic principles, design, composition and achievements of the LPR. Finally, experiments on a glacier and the lunar surface are analyzed.