In this paper we construct a new time-periodic solution of the vacuum Einstein's field equations, this solution possesses physical singularities, i.e., the norm of the solution's Riemann curvature tensor takes...In this paper we construct a new time-periodic solution of the vacuum Einstein's field equations, this solution possesses physical singularities, i.e., the norm of the solution's Riemann curvature tensor takes the infinity at some points. We show that this solution is intrinsically time-periodic and describes a time-periodic universe with the "time-periodic physical singularity". By calculating the Weyl scalars of this solution, we investigate new physical phenomena and analyze new singularities for this universal model.展开更多
Both bi-harmonic maps and f-harmonic maps have some nice physical motivation and applications.Motivated largely by f-tension field not involving Riemannian curvature tensor, we attempt to formalize some large objects ...Both bi-harmonic maps and f-harmonic maps have some nice physical motivation and applications.Motivated largely by f-tension field not involving Riemannian curvature tensor, we attempt to formalize some large objects so as to broaden the notions of f-tension field and bi-tension field. We introduce a very large generalization of harmonic maps called f-bi-harmonic maps as the critical points of f-bi-energy functional, and then derive the Euler-Lagrange equation of f-bi-energy functional given by the vanishing of f-bi-tension field.Subsequently, we study some properties of f-bi-harmonic maps between the same dimensional manifolds and give a non-trivial example. Furthermore, we also study the basic properties of f-bi-harmonic maps on a warped product manifold so that we could find some interesting and complicated examples.展开更多
基金supported by National Natural Science Foundation of China (Grant No.10971190) and the Qiu-Shi Professor Fellowship from Zhejiang University,China
文摘In this paper we construct a new time-periodic solution of the vacuum Einstein's field equations, this solution possesses physical singularities, i.e., the norm of the solution's Riemann curvature tensor takes the infinity at some points. We show that this solution is intrinsically time-periodic and describes a time-periodic universe with the "time-periodic physical singularity". By calculating the Weyl scalars of this solution, we investigate new physical phenomena and analyze new singularities for this universal model.
基金supported by the Science and Technology Research Project of Guangxi Universities(Grant No.2015ZD038)the Key Scientific Research Project of Guangxi University for Nationalities(Grant No.2012MDZD033)
文摘Both bi-harmonic maps and f-harmonic maps have some nice physical motivation and applications.Motivated largely by f-tension field not involving Riemannian curvature tensor, we attempt to formalize some large objects so as to broaden the notions of f-tension field and bi-tension field. We introduce a very large generalization of harmonic maps called f-bi-harmonic maps as the critical points of f-bi-energy functional, and then derive the Euler-Lagrange equation of f-bi-energy functional given by the vanishing of f-bi-tension field.Subsequently, we study some properties of f-bi-harmonic maps between the same dimensional manifolds and give a non-trivial example. Furthermore, we also study the basic properties of f-bi-harmonic maps on a warped product manifold so that we could find some interesting and complicated examples.