Whether the Tibetan Plateau is a significant dust source area is of great importance, because this is re-lated to the understanding of sources, accumulation and environmental effects of dusts on the Tibetan Plateau an...Whether the Tibetan Plateau is a significant dust source area is of great importance, because this is re-lated to the understanding of sources, accumulation and environmental effects of dusts on the Tibetan Plateau and in the Far East-Pacific Ocean regions as well as to the evolution of coupling of the Tibetan Plateau and atmosphere-ocean- continent exchange. Synoptic dynamics and remote sensing tracing of a dust storm on 3 to 5 March, 2003 in Lhasa on South Tibet demonstrate that the Tibetan Plateau possesses all factors and conditions of generating dust storms. Accom-panied with this dust storm is a strong ascending stream on the Plateau which has raised various sizes of dust particles into different levels. The lifted coarse particles were largely fallen down and accumulated as loess on the eastern Tibetan Plateau, and the fine particles were translated by the west-erly jet and subsided in the northern Pacific Ocean. The spa-tial-temporal distribution of dust-storms between years 1961 and 2000 on the Plateau shows that dust-storms mainly occur in winter and early spring with high frequency, and the path of dust storm moves gradually from south to north, which is closely coupled with the northward moving of the westerly jet from winter to spring over the Tibetan Plateau. Com-pared with other twelve dust source areas in China, the Ti-betan Plateau is one of the key dust source areas for the long-distance transport because its high occurring frequency and elevation cause fine particles easily to be lifted into the zone of the westerly jet.展开更多
Whether climatic changes in high latitudes of the Northern Hemisphere since the last glaciation have effects on the Tibetan Plateau monsoon, and the variation characteristics of the Plateau monsoon itself are still no...Whether climatic changes in high latitudes of the Northern Hemisphere since the last glaciation have effects on the Tibetan Plateau monsoon, and the variation characteristics of the Plateau monsoon itself are still not solved but of great significance. The 22-m high-resolution Ioess-paleosol sequence in the Hezuo Basin on the northeastern Tibetan Plateau demonstrates that the Plateau winter monsoon experienced a millennial variation similar to high latitude Northern Hemisphere, with cold events clearly correlated with Heinrich events but less for the warm events (Dansgarrd-Oeschger events). It may indicate that the climate system at high latitudes in the Northern Hemisphere had played an important role in both the Plateau monsoon and the high-level westerlies. On 10^4 year scale, there are two distinct anomalous changes, which are not found in the records from high latitude northern hemisphere, revealed by the loess grain size in the Hezuo Basin. One is that there was a considerable grain size increase at -36 kaBP, suggesting an abrupt enhancement of the Plateau winter monsoon at that time; the other is that, during 43--36 kaBP, the grain size decreased distinctly, indicating a notable weakening of the Plateau winter monsoon around that period. Both of the two anomalies suggest that the Tibetan climate may have been controlled by some other factors, besides the high latitude climatic changes in the Northern Hemisphere.展开更多
文摘Whether the Tibetan Plateau is a significant dust source area is of great importance, because this is re-lated to the understanding of sources, accumulation and environmental effects of dusts on the Tibetan Plateau and in the Far East-Pacific Ocean regions as well as to the evolution of coupling of the Tibetan Plateau and atmosphere-ocean- continent exchange. Synoptic dynamics and remote sensing tracing of a dust storm on 3 to 5 March, 2003 in Lhasa on South Tibet demonstrate that the Tibetan Plateau possesses all factors and conditions of generating dust storms. Accom-panied with this dust storm is a strong ascending stream on the Plateau which has raised various sizes of dust particles into different levels. The lifted coarse particles were largely fallen down and accumulated as loess on the eastern Tibetan Plateau, and the fine particles were translated by the west-erly jet and subsided in the northern Pacific Ocean. The spa-tial-temporal distribution of dust-storms between years 1961 and 2000 on the Plateau shows that dust-storms mainly occur in winter and early spring with high frequency, and the path of dust storm moves gradually from south to north, which is closely coupled with the northward moving of the westerly jet from winter to spring over the Tibetan Plateau. Com-pared with other twelve dust source areas in China, the Ti-betan Plateau is one of the key dust source areas for the long-distance transport because its high occurring frequency and elevation cause fine particles easily to be lifted into the zone of the westerly jet.
文摘Whether climatic changes in high latitudes of the Northern Hemisphere since the last glaciation have effects on the Tibetan Plateau monsoon, and the variation characteristics of the Plateau monsoon itself are still not solved but of great significance. The 22-m high-resolution Ioess-paleosol sequence in the Hezuo Basin on the northeastern Tibetan Plateau demonstrates that the Plateau winter monsoon experienced a millennial variation similar to high latitude Northern Hemisphere, with cold events clearly correlated with Heinrich events but less for the warm events (Dansgarrd-Oeschger events). It may indicate that the climate system at high latitudes in the Northern Hemisphere had played an important role in both the Plateau monsoon and the high-level westerlies. On 10^4 year scale, there are two distinct anomalous changes, which are not found in the records from high latitude northern hemisphere, revealed by the loess grain size in the Hezuo Basin. One is that there was a considerable grain size increase at -36 kaBP, suggesting an abrupt enhancement of the Plateau winter monsoon at that time; the other is that, during 43--36 kaBP, the grain size decreased distinctly, indicating a notable weakening of the Plateau winter monsoon around that period. Both of the two anomalies suggest that the Tibetan climate may have been controlled by some other factors, besides the high latitude climatic changes in the Northern Hemisphere.