期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于查询性能预测的鲁棒检索排序研究
1
作者 薛源海 俞晓明 +2 位作者 刘悦 关峰 程学旗 《中文信息学报》 CSCD 北大核心 2016年第5期169-175,186,共8页
信息检索技术致力于从海量的信息资源中为用户获取所需的信息。相较于传统的简单模型,近些年来的大量研究工作在提升了检索结果平均质量的同时,往往忽略了鲁棒性的问题,即造成了很多查询的性能下降,导致用户满意度的显著下降。本文提出... 信息检索技术致力于从海量的信息资源中为用户获取所需的信息。相较于传统的简单模型,近些年来的大量研究工作在提升了检索结果平均质量的同时,往往忽略了鲁棒性的问题,即造成了很多查询的性能下降,导致用户满意度的显著下降。本文提出了一种基于排序学习的查询性能预测方法,针对每一个查询,对多种模型得到的检索结果列表进行预测,将其中预测性能最优的检索结果列表展示给用户。在LETOR的三个标准数据集OHSUMED、MQ2008和MSLR-WEB10K上的一系列对比实验表明,在以经典的BM25模型作为基准的情况下,与当前最好的检索模型之一LambdaMART相比,该方法在提升了检索结果平均质量的同时,显著地减少了性能下降的查询的数量,具备较好的鲁棒性。 展开更多
关键词 查询性能预测 排序学习 检索排序
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部