提出了一种对面部遮挡具有鲁棒性的表情识别方法.首先,基于鲁棒主成分分析(RPCA,Robust Principal Component Analysis)对待识别人脸进行重构,并对重构人脸和待识别人脸的差值图像进行显著性检测得到面部遮挡区域;其次,将待识别人脸的...提出了一种对面部遮挡具有鲁棒性的表情识别方法.首先,基于鲁棒主成分分析(RPCA,Robust Principal Component Analysis)对待识别人脸进行重构,并对重构人脸和待识别人脸的差值图像进行显著性检测得到面部遮挡区域;其次,将待识别人脸的遮挡区域由RPCA重构人脸的相应区域进行替换,并由权值更新的AdaBoost分类器对遮挡区域重构后的人脸进行表情识别.在BHU(Beihang University)人脸表情数据库和日本女性表情数据库上进行了各种遮挡情况下的表情识别实验,获得了比AdaBoost方法更好的识别结果,说明基于RPCA和AdaBoost的表情识别方法对多种面部遮挡具有较强的鲁棒性.展开更多
为了实现在监控视频中对人体运动目标的准确提取,针对传统的三帧差分法在运动目标提取过程中容易出现"空洞"现象,提出了一种鲁棒主成分分析(robust principal component analysis,RPCA)与三帧差分相融合的运动目标检测算法。...为了实现在监控视频中对人体运动目标的准确提取,针对传统的三帧差分法在运动目标提取过程中容易出现"空洞"现象,提出了一种鲁棒主成分分析(robust principal component analysis,RPCA)与三帧差分相融合的运动目标检测算法。算法通过将RPCA提取的视频当前帧的背景作为三帧差分法的中间帧与视频当前帧的前一帧和视频当前帧分别进行邻间差分,使得三帧差分法在运动目标检测过程中避免了背景像素点所带来的影响,消除了"空洞"现象。仿真结果表明该算法在完整性和准确性方面要优于其他三种传统运动目标检测算法,可以在复杂背景环境中实现准确的运动目标提取。展开更多
针对训练样本图像和测试样本图像均存在光照、污染、遮挡等情况下的人脸识别问题,提出一种基于鲁棒主成分分析的群稀疏表示人脸识别方法(group sparse representation face recognition method based on robust principal component ana...针对训练样本图像和测试样本图像均存在光照、污染、遮挡等情况下的人脸识别问题,提出一种基于鲁棒主成分分析的群稀疏表示人脸识别方法(group sparse representation face recognition method based on robust principal component analysis, GSR-RPCA)。该方法将人脸图像由空域变换到对数域,增强人脸图像的对比度,并通过结构非相关鲁棒主成分分析算法从训练样本图像矩阵D中分解出干净的低秩部分人脸图像矩阵A和误差图像矩阵E,以增强恢复数据的鉴别力;学习A与D之间的低秩映射关系矩阵P,并用P将存在遮挡的测试样本映射到其潜在的子空间下,得到干净的测试样本y;计算y在A上的群稀疏表示系数,并利用类关联重构残差对测试人脸进行识别,获得测试人脸的所属类别。在CMU PIE,Extended Yale B和AR数据库上的实验结果显示,提出方法具有较高的识别率和较强的鲁棒性。展开更多
针对鲁棒主成分分析(Robust Principal Component Analysis,RPCA)算法中将动态背景误检为运动目标的问题,该文提出一种运动目标检测优化算法。在RPCA算法初步检测出运动目标后,利用动态背景在时间域上满足高斯分布的特性,以及动态背景...针对鲁棒主成分分析(Robust Principal Component Analysis,RPCA)算法中将动态背景误检为运动目标的问题,该文提出一种运动目标检测优化算法。在RPCA算法初步检测出运动目标后,利用动态背景在时间域上满足高斯分布的特性,以及动态背景和运动目标在整个视频流上检出点均值和方差的差异特性,进一步将动态背景和运动目标分离开来。实验结果表明,所提算法能够有效地处理动态背景的问题,并在一定程度上完整检测出运动目标。展开更多
以图像非局部相似性为基础,利用图像分块重组以获得低秩块图像,是将鲁棒主成分分析算法(robust principal component analysis,RPCA)应用到单帧图像红外小目标检测的基本方法。本文介绍了RPCA算法在单帧图像红外小目标检测的应用流程,...以图像非局部相似性为基础,利用图像分块重组以获得低秩块图像,是将鲁棒主成分分析算法(robust principal component analysis,RPCA)应用到单帧图像红外小目标检测的基本方法。本文介绍了RPCA算法在单帧图像红外小目标检测的应用流程,分析了不同图像背景下各种分块方法的影响。为解决复杂背景下图像分块窗口和滑动步长难以选择的问题,提出了以图像分块最小局部熵的较大值为参考的选择方法。实验结果表明,通过计算图像的分块局部熵,以最小局部熵的较大值为参考,选择RPCA算法预处理方案,能使单帧红外图像小目标检测达到更好的效果,弥补了工程人员缺少RPCA算法应用经验的不足。展开更多
文摘提出了一种对面部遮挡具有鲁棒性的表情识别方法.首先,基于鲁棒主成分分析(RPCA,Robust Principal Component Analysis)对待识别人脸进行重构,并对重构人脸和待识别人脸的差值图像进行显著性检测得到面部遮挡区域;其次,将待识别人脸的遮挡区域由RPCA重构人脸的相应区域进行替换,并由权值更新的AdaBoost分类器对遮挡区域重构后的人脸进行表情识别.在BHU(Beihang University)人脸表情数据库和日本女性表情数据库上进行了各种遮挡情况下的表情识别实验,获得了比AdaBoost方法更好的识别结果,说明基于RPCA和AdaBoost的表情识别方法对多种面部遮挡具有较强的鲁棒性.
文摘为了实现在监控视频中对人体运动目标的准确提取,针对传统的三帧差分法在运动目标提取过程中容易出现"空洞"现象,提出了一种鲁棒主成分分析(robust principal component analysis,RPCA)与三帧差分相融合的运动目标检测算法。算法通过将RPCA提取的视频当前帧的背景作为三帧差分法的中间帧与视频当前帧的前一帧和视频当前帧分别进行邻间差分,使得三帧差分法在运动目标检测过程中避免了背景像素点所带来的影响,消除了"空洞"现象。仿真结果表明该算法在完整性和准确性方面要优于其他三种传统运动目标检测算法,可以在复杂背景环境中实现准确的运动目标提取。
文摘针对训练样本图像和测试样本图像均存在光照、污染、遮挡等情况下的人脸识别问题,提出一种基于鲁棒主成分分析的群稀疏表示人脸识别方法(group sparse representation face recognition method based on robust principal component analysis, GSR-RPCA)。该方法将人脸图像由空域变换到对数域,增强人脸图像的对比度,并通过结构非相关鲁棒主成分分析算法从训练样本图像矩阵D中分解出干净的低秩部分人脸图像矩阵A和误差图像矩阵E,以增强恢复数据的鉴别力;学习A与D之间的低秩映射关系矩阵P,并用P将存在遮挡的测试样本映射到其潜在的子空间下,得到干净的测试样本y;计算y在A上的群稀疏表示系数,并利用类关联重构残差对测试人脸进行识别,获得测试人脸的所属类别。在CMU PIE,Extended Yale B和AR数据库上的实验结果显示,提出方法具有较高的识别率和较强的鲁棒性。
文摘针对鲁棒主成分分析(Robust Principal Component Analysis,RPCA)算法中将动态背景误检为运动目标的问题,该文提出一种运动目标检测优化算法。在RPCA算法初步检测出运动目标后,利用动态背景在时间域上满足高斯分布的特性,以及动态背景和运动目标在整个视频流上检出点均值和方差的差异特性,进一步将动态背景和运动目标分离开来。实验结果表明,所提算法能够有效地处理动态背景的问题,并在一定程度上完整检测出运动目标。
文摘以图像非局部相似性为基础,利用图像分块重组以获得低秩块图像,是将鲁棒主成分分析算法(robust principal component analysis,RPCA)应用到单帧图像红外小目标检测的基本方法。本文介绍了RPCA算法在单帧图像红外小目标检测的应用流程,分析了不同图像背景下各种分块方法的影响。为解决复杂背景下图像分块窗口和滑动步长难以选择的问题,提出了以图像分块最小局部熵的较大值为参考的选择方法。实验结果表明,通过计算图像的分块局部熵,以最小局部熵的较大值为参考,选择RPCA算法预处理方案,能使单帧红外图像小目标检测达到更好的效果,弥补了工程人员缺少RPCA算法应用经验的不足。