期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
2
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于空间注意力的CNN特征增强方法
被引量:
4
1
作者
许畅
王朝辉
《计算机技术与发展》
2022年第6期74-78,111,共6页
卷积神经网络一般被用于特征提取,它通过提取图像底层的点、线、面的几何特征,进而映射到高层的语义特征,然而传统的卷积网络只对输入的样本进行宽泛的特征提取,而不会刻意去区分图像的前景和后景,这使得模型提取到的特征包含大量的背...
卷积神经网络一般被用于特征提取,它通过提取图像底层的点、线、面的几何特征,进而映射到高层的语义特征,然而传统的卷积网络只对输入的样本进行宽泛的特征提取,而不会刻意去区分图像的前景和后景,这使得模型提取到的特征包含大量的背景噪声,降低了模型的表征能力。在空间注意力的基础上,提出了一种名为特征增强网络(FA-block)的卷积网络分支,这种网络结构从样本的掩膜中学习目标的空间分布,为原始特征图上的每一个像素点训练得到代表重要程度的权重,然后通过加权的方式突出特征图中的目标部位。此方法旨在抑制背景噪声,增强待学习的目标特征,让主干网络提取到的特征更加纯净。在PASCAL VOC数据集上的实验证明了FA-block的有效性,最后经过MS COCO数据集的验证,FA-block使得Faster Rcnn基线的性能提高了5.5%。
展开更多
关键词
计算机视觉
卷积神经网络
空间注意力
特征增强
高频
噪声抑制
下载PDF
职称材料
面向永磁同步电机无传感器控制的二阶改进扩展状态观测器
2
作者
刘思源
刘凌
《西安交通大学学报》
EI
CAS
CSCD
北大核心
2024年第8期1-8,共8页
针对传统扩展状态观测器(extended states observer,ESO)为保证收敛性和提升系统动态性能而增大矫正项增益,进而加剧对于高频噪声敏感性的问题,提出了一种面向永磁同步电机(permanent magnet synchronous motor,PMSM)无位置传感器控制...
针对传统扩展状态观测器(extended states observer,ESO)为保证收敛性和提升系统动态性能而增大矫正项增益,进而加剧对于高频噪声敏感性的问题,提出了一种面向永磁同步电机(permanent magnet synchronous motor,PMSM)无位置传感器控制的改进扩展状态观测器(improved ESO,IESO)。结合PMSM扩展反电动势全阶模型,将扩展反电动势作为ESO扩展的状态;通过将低阶动态方程的输出作为高阶动态方程的输入的方法设计IESO,从而有效降低矫正项增益,进而减小系统对高频噪声的敏感性;在矫正项中引入饱和函数以限制高增益观测器可能引入的峰值效应,并进行了收敛性分析。数值仿真结果表明:相较于传统线性ESO,采用IESO后,PMSM无传感器控制系统在电机启动、调速及突加负载时动态性能均有提升,误差最大值减小,同时收敛速度加快约25%;在测量电流加入0.5 A随机高频噪声后,传统方法收敛时间增加了约25%,转速误差最大值增大了约40%,而IESO并没有显著增加,同时相较于传统方法,IESO的角度误差高频噪声减小了约60%,因而IESO能够显著抑制系统高频噪声。
展开更多
关键词
永磁同步电机
无位置传感器控制
二阶状态观测器
高增益观测器
高频
噪声抑制
下载PDF
职称材料
题名
基于空间注意力的CNN特征增强方法
被引量:
4
1
作者
许畅
王朝辉
机构
武汉科技大学计算机科学与技术学院
出处
《计算机技术与发展》
2022年第6期74-78,111,共6页
基金
国家自然科学基金资助项目(61806150)。
文摘
卷积神经网络一般被用于特征提取,它通过提取图像底层的点、线、面的几何特征,进而映射到高层的语义特征,然而传统的卷积网络只对输入的样本进行宽泛的特征提取,而不会刻意去区分图像的前景和后景,这使得模型提取到的特征包含大量的背景噪声,降低了模型的表征能力。在空间注意力的基础上,提出了一种名为特征增强网络(FA-block)的卷积网络分支,这种网络结构从样本的掩膜中学习目标的空间分布,为原始特征图上的每一个像素点训练得到代表重要程度的权重,然后通过加权的方式突出特征图中的目标部位。此方法旨在抑制背景噪声,增强待学习的目标特征,让主干网络提取到的特征更加纯净。在PASCAL VOC数据集上的实验证明了FA-block的有效性,最后经过MS COCO数据集的验证,FA-block使得Faster Rcnn基线的性能提高了5.5%。
关键词
计算机视觉
卷积神经网络
空间注意力
特征增强
高频
噪声抑制
Keywords
computer vision
convolution neural network
spatial attention
feature augment
high frequency noise suppression
分类号
TP391.41 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
面向永磁同步电机无传感器控制的二阶改进扩展状态观测器
2
作者
刘思源
刘凌
机构
西安交通大学电气工程学院
出处
《西安交通大学学报》
EI
CAS
CSCD
北大核心
2024年第8期1-8,共8页
基金
国家自然科学基金资助项目(51977173)。
文摘
针对传统扩展状态观测器(extended states observer,ESO)为保证收敛性和提升系统动态性能而增大矫正项增益,进而加剧对于高频噪声敏感性的问题,提出了一种面向永磁同步电机(permanent magnet synchronous motor,PMSM)无位置传感器控制的改进扩展状态观测器(improved ESO,IESO)。结合PMSM扩展反电动势全阶模型,将扩展反电动势作为ESO扩展的状态;通过将低阶动态方程的输出作为高阶动态方程的输入的方法设计IESO,从而有效降低矫正项增益,进而减小系统对高频噪声的敏感性;在矫正项中引入饱和函数以限制高增益观测器可能引入的峰值效应,并进行了收敛性分析。数值仿真结果表明:相较于传统线性ESO,采用IESO后,PMSM无传感器控制系统在电机启动、调速及突加负载时动态性能均有提升,误差最大值减小,同时收敛速度加快约25%;在测量电流加入0.5 A随机高频噪声后,传统方法收敛时间增加了约25%,转速误差最大值增大了约40%,而IESO并没有显著增加,同时相较于传统方法,IESO的角度误差高频噪声减小了约60%,因而IESO能够显著抑制系统高频噪声。
关键词
永磁同步电机
无位置传感器控制
二阶状态观测器
高增益观测器
高频
噪声抑制
Keywords
permanent magnet synchronous motor
sensorless control
second-order states observer
high gain observer
high frequency noise suppression
分类号
TM301 [电气工程—电机]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于空间注意力的CNN特征增强方法
许畅
王朝辉
《计算机技术与发展》
2022
4
下载PDF
职称材料
2
面向永磁同步电机无传感器控制的二阶改进扩展状态观测器
刘思源
刘凌
《西安交通大学学报》
EI
CAS
CSCD
北大核心
2024
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部