为了提高图像检索的准确度和检索效率,提出一种基于卷积神经网络和局部敏感哈希(Locality-Sensitive Hashing,LSH)算法的图像检索算法。使用图像库ImageNet对视觉几何小组16(Visual Geometry Group 16,VGG16)网络进行训练,获取初始化参...为了提高图像检索的准确度和检索效率,提出一种基于卷积神经网络和局部敏感哈希(Locality-Sensitive Hashing,LSH)算法的图像检索算法。使用图像库ImageNet对视觉几何小组16(Visual Geometry Group 16,VGG16)网络进行训练,获取初始化参数。以卷积神经网络为基础,增加哈希层代替VGG16全连接层,获取图像的高维特征向量。利用哈希函数满足p-稳定分布的LSH算法将高维特征向量映射为哈希码,并将相似图像映射到同一个哈希桶中作为粗检候选集,计算并排序候选集中特征向量欧氏距离完成图像检索,从而得到最终的检索结果。实验结果表明,与其他基于不同哈希算法的图像检索算法相比,所提算法具有较高的准确性和较快的检索速度。展开更多
针对轴承故障信号往往被强背景噪声淹没,采用传统包络解调方法难以提取故障特征的问题,提出总体局部均值分解(ensemble local mean decomposition,ELMD)与排列熵(permutation entropy,PE)相结合的轴承故障诊断方法。首先,对轴承振动信...针对轴承故障信号往往被强背景噪声淹没,采用传统包络解调方法难以提取故障特征的问题,提出总体局部均值分解(ensemble local mean decomposition,ELMD)与排列熵(permutation entropy,PE)相结合的轴承故障诊断方法。首先,对轴承振动信号进行ELMD分解并得到一系列窄带乘积函数(product function,PF),然后,计算各PF分量排列熵以构造高维特征向量,最后将高维特征向量作为多故障分类器的输入来识别轴承故障类型。实验结果表明ELMD方法可以有效地抑制模态混叠;PF分量的排列熵分布可以反应轴承不同工作状态下的信号特征;基于ELMD与排列熵的智能诊断方法可以准确地识别轴承的工作状态和故障类型。展开更多
文摘为了提高图像检索的准确度和检索效率,提出一种基于卷积神经网络和局部敏感哈希(Locality-Sensitive Hashing,LSH)算法的图像检索算法。使用图像库ImageNet对视觉几何小组16(Visual Geometry Group 16,VGG16)网络进行训练,获取初始化参数。以卷积神经网络为基础,增加哈希层代替VGG16全连接层,获取图像的高维特征向量。利用哈希函数满足p-稳定分布的LSH算法将高维特征向量映射为哈希码,并将相似图像映射到同一个哈希桶中作为粗检候选集,计算并排序候选集中特征向量欧氏距离完成图像检索,从而得到最终的检索结果。实验结果表明,与其他基于不同哈希算法的图像检索算法相比,所提算法具有较高的准确性和较快的检索速度。
文摘针对轴承故障信号往往被强背景噪声淹没,采用传统包络解调方法难以提取故障特征的问题,提出总体局部均值分解(ensemble local mean decomposition,ELMD)与排列熵(permutation entropy,PE)相结合的轴承故障诊断方法。首先,对轴承振动信号进行ELMD分解并得到一系列窄带乘积函数(product function,PF),然后,计算各PF分量排列熵以构造高维特征向量,最后将高维特征向量作为多故障分类器的输入来识别轴承故障类型。实验结果表明ELMD方法可以有效地抑制模态混叠;PF分量的排列熵分布可以反应轴承不同工作状态下的信号特征;基于ELMD与排列熵的智能诊断方法可以准确地识别轴承的工作状态和故障类型。