Polymerization of mixed alpha-olefins originating from the Fischer-Tropsch synthesis catalyzed by theBu)_3/[Me_2NHPh]^+[B(C_6F_5)_4]^-,was studied.The effects of the Zr/olefin mole ratio,Al/Zr mole ratio,reaction temp...Polymerization of mixed alpha-olefins originating from the Fischer-Tropsch synthesis catalyzed by theBu)_3/[Me_2NHPh]^+[B(C_6F_5)_4]^-,was studied.The effects of the Zr/olefin mole ratio,Al/Zr mole ratio,reaction temperature,and reaction time on the viscosity and molecular weight of the product were investigated.The conversion under optimized conditions reached 97.3%.The product structure was characterized by ^(13)C NMR spectrometry and ~1H NMR spectrometry,and the conversion of olefins with different carbon numbers under different conditions was determined by GC analysis.The polymer obtained under optimized conditions has a high viscosity index of 262 with a narrow molecular weight distribution of 1.95,which is a desired component for lubricating base oil.展开更多
Granitic continental crust distinguishes the Earth from other planets in the Solar System. Consequently, for understanding terrestrial continent development, it is of great significance to investigate the formation an...Granitic continental crust distinguishes the Earth from other planets in the Solar System. Consequently, for understanding terrestrial continent development, it is of great significance to investigate the formation and evolution of granite.Crystal fractionation is one of principal magma evolution mechanisms. Nevertheless, it is controversial whether crystal fractionation can effectively proceed in felsic magma systems because of the high viscosity and non-Newtonian behavior associated with granitic magmas. In this paper, we focus on the physical processes and evaluate the role of crystal fractionation in the evolution of granitic magmas during non-transport processes, i.e., in magma chambers and after emplacement. Based on physical calculations and analyses, we suggest that general mineral particles can settle only at tiny speed(~10^(-9)–10^(-7) m s^(-1))in a granitic magma body due to high viscosity of the magma; however, the cumulating can be interrupted with convection in magma chambers, and the components of magma chambers will tend to be homogeneous. Magma convection ceases once the magma chamber develops into a mush(crystallinity, F>~40–50%). The interstitial melts can be extracted by hindered settling and compaction, accumulating gradually and forming a highly silicic melt layer. The high silica melts can further evolve into high-silica granite or high-silica rhyolite. At various crystallinities, multiple rejuvenation of the mush and the following magma intrusion may generate a granite complex with various components. While one special type of granites, represented by the South China lithium-and fluoride-rich granite, has lower viscosity and solidus relative to general granitic magmas, and may form vertical zonation in mineral-assemblage and composition through crystal fractionation. Similar fabrics in general intrusions that show various components on small lengthscales are not the result of gravitational settling. Rather, the flowage differentiation may play a key role. In general, granitic magma can展开更多
文摘Polymerization of mixed alpha-olefins originating from the Fischer-Tropsch synthesis catalyzed by theBu)_3/[Me_2NHPh]^+[B(C_6F_5)_4]^-,was studied.The effects of the Zr/olefin mole ratio,Al/Zr mole ratio,reaction temperature,and reaction time on the viscosity and molecular weight of the product were investigated.The conversion under optimized conditions reached 97.3%.The product structure was characterized by ^(13)C NMR spectrometry and ~1H NMR spectrometry,and the conversion of olefins with different carbon numbers under different conditions was determined by GC analysis.The polymer obtained under optimized conditions has a high viscosity index of 262 with a narrow molecular weight distribution of 1.95,which is a desired component for lubricating base oil.
基金supported by the National Key R&D Program of China (Grant Nos. 2016YFC0600204 & 2016YFC0600408)the National Natural Science Foundation of China (Grant Nos. 41421062 & 41372005)
文摘Granitic continental crust distinguishes the Earth from other planets in the Solar System. Consequently, for understanding terrestrial continent development, it is of great significance to investigate the formation and evolution of granite.Crystal fractionation is one of principal magma evolution mechanisms. Nevertheless, it is controversial whether crystal fractionation can effectively proceed in felsic magma systems because of the high viscosity and non-Newtonian behavior associated with granitic magmas. In this paper, we focus on the physical processes and evaluate the role of crystal fractionation in the evolution of granitic magmas during non-transport processes, i.e., in magma chambers and after emplacement. Based on physical calculations and analyses, we suggest that general mineral particles can settle only at tiny speed(~10^(-9)–10^(-7) m s^(-1))in a granitic magma body due to high viscosity of the magma; however, the cumulating can be interrupted with convection in magma chambers, and the components of magma chambers will tend to be homogeneous. Magma convection ceases once the magma chamber develops into a mush(crystallinity, F>~40–50%). The interstitial melts can be extracted by hindered settling and compaction, accumulating gradually and forming a highly silicic melt layer. The high silica melts can further evolve into high-silica granite or high-silica rhyolite. At various crystallinities, multiple rejuvenation of the mush and the following magma intrusion may generate a granite complex with various components. While one special type of granites, represented by the South China lithium-and fluoride-rich granite, has lower viscosity and solidus relative to general granitic magmas, and may form vertical zonation in mineral-assemblage and composition through crystal fractionation. Similar fabrics in general intrusions that show various components on small lengthscales are not the result of gravitational settling. Rather, the flowage differentiation may play a key role. In general, granitic magma can