期刊文献+
共找到56篇文章
< 1 2 3 >
每页显示 20 50 100
采用归一化补偿变换的与文本无关的说话人识别 被引量:13
1
作者 包永强 赵力 邹采荣 《声学学报》 EI CSCD 北大核心 2006年第1期55-60,共6页
在噪声环境下,特别是当说话人识别最常用的模型——高斯混合模型(GMM)失配的情况下,需要对其输出帧似然概率的统计特性进行补偿。文章根据说话人识别的声学特性,提出了一种非线性变换方法——归一化补偿变换。理论分析和实验结果表明:... 在噪声环境下,特别是当说话人识别最常用的模型——高斯混合模型(GMM)失配的情况下,需要对其输出帧似然概率的统计特性进行补偿。文章根据说话人识别的声学特性,提出了一种非线性变换方法——归一化补偿变换。理论分析和实验结果表明:与常用的最大似然(ML)变换相比,该变换能够提高系统识别率,最大可达3.7%,同时可降低误识率,最大可达45.1%。结果说明归一化补偿变换方法基本克服了在与文本无关说话人识别系统中,当说话人的个性特征不断变化、语音与噪声不能很好地分离或者降噪算法对语音有损伤、模型不能很好地匹配时,需要对模型输出的似然概率(得分)进行补偿的局限。这也说明对模型输出的似然概率进行处理是降低噪声和干扰的影响、提高说话人识别率的有效方法。 展开更多
关键词 说话人识别系统 与文本无关 高斯混合模型(gmm) 归一化 补偿 噪声环境 变换方法 统计特性 声学特性 最大似然
下载PDF
考虑车辆超载的公路简支梁桥疲劳性能 被引量:13
2
作者 刘扬 张海萍 +1 位作者 邓扬 李明 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2015年第11期2172-2178,共7页
为了分析车辆超载运营对公路梁桥疲劳损伤的影响,运用刚性梁法对统计车辆进行轴重分配计算.推导车辆超载率与简支梁桥的疲劳损伤值的关系.运用高斯混合模型(GMM)描述车辆超载运营荷载概率分布,得到车辆超载运营的概率统计模型.在该基础... 为了分析车辆超载运营对公路梁桥疲劳损伤的影响,运用刚性梁法对统计车辆进行轴重分配计算.推导车辆超载率与简支梁桥的疲劳损伤值的关系.运用高斯混合模型(GMM)描述车辆超载运营荷载概率分布,得到车辆超载运营的概率统计模型.在该基础上,结合车辆超载率与简支梁桥疲劳损伤关系式和车辆超载概率模型,提出针对车辆荷载作用下简支梁桥疲劳损伤计算方法.基于WIM系统统计数据对宜泸高速某预应力简支梁桥进行为期一月的疲劳损伤累积计算并对该桥的疲劳寿命进行了评估.分析表明:车辆超载率与简支梁疲劳损伤值程指数函数关系,车辆超载率概率模型呈多峰分布,以宜泸高速某简支梁桥为例,月疲劳损伤值和疲劳寿命分别为5.8×10-6和88a. 展开更多
关键词 简支梁 超载 疲劳损伤 WIM系统 高斯混合模型(gmm)
下载PDF
与文本无关的说话人辨认系统中一种新的使用基音周期方法研究 被引量:5
3
作者 段新 黄新宇 吴淑珍 《北京大学学报(自然科学版)》 CAS CSCD 北大核心 2003年第5期690-696,共7页
研究了与文本无关的说话人辨认系统中一种新的使用基音周期方法。在说话人辨认系统中将矢量量化 (VQ)、高斯混合模型 (GMM)分类器结合 ,使用升正弦窗函数加权的线性预测倒谱系数 (LPCC)。在训练时为训练集中的每个说话人估计一个一维高... 研究了与文本无关的说话人辨认系统中一种新的使用基音周期方法。在说话人辨认系统中将矢量量化 (VQ)、高斯混合模型 (GMM)分类器结合 ,使用升正弦窗函数加权的线性预测倒谱系数 (LPCC)。在训练时为训练集中的每个说话人估计一个一维高斯形式的基音周期概率密度函数 ;在识别时 ,将测试语音中提取的基音周期在训练集说话人基音周期概率模型中得到的基音周期概率密度对VQ、GMM分类器的似然测度加权 ,形成新的似然测度。实验结果表明 ,使用新的似然测度进行与文本无关的说话人辨认比VQ、GMM分类器的辨认率有较大的提高 ,码字个数为 8,测试时间为 8s时 ,辨认率相对VQ提高约 13%。 展开更多
关键词 矢量量化(VQ) 高斯混合模型(gmm) 升正弦窗函数 基音周期概率密度的高斯函数估计 加权的似然测度
下载PDF
基于高斯混合模型的非高斯振动疲劳频域求解方法 被引量:5
4
作者 朱帅康 董龙雷 +2 位作者 官威 王珺 李斌潮 《振动与冲击》 EI CSCD 北大核心 2022年第16期93-99,共7页
很多机械结构在工作环境下经受的随机载荷有着较强的非高斯性,按照传统的高斯假设对这些结构进行疲劳计算会带来很大误差。针对非高斯载荷下结构疲劳寿命难以预测的问题,提出了一种非高斯随机载荷下对结构进行疲劳计算的频域方法。首先... 很多机械结构在工作环境下经受的随机载荷有着较强的非高斯性,按照传统的高斯假设对这些结构进行疲劳计算会带来很大误差。针对非高斯载荷下结构疲劳寿命难以预测的问题,提出了一种非高斯随机载荷下对结构进行疲劳计算的频域方法。首先引入高斯混合模型(Gaussian mixture model,GMM)对载荷进行描述,并使用期望最大(expectation maximization,EM)算法对模型参数进行求解,建立的模型可以准确描述单峰及多峰非高斯载荷。在此基础上结合Tovo-Benasciutti方法推导出一种多峰非高斯载荷下的频域疲劳计算方法。为了对该方法进行验证,对一个双峰分布的非高斯载荷信号进行了疲劳分析,以雨流计数法作为参考,结果表明在双峰非高斯载荷下,对多种材料,该方法与直接使用传统频域疲劳计算方法相比计算精度提升明显,验证了该方法的精确性及较广的适用性。 展开更多
关键词 高斯载荷 高斯混合模型(gmm) 期望最大(EM)算法 频域疲劳寿命计算
下载PDF
一种新的高斯混合模型参数估计算法 被引量:3
5
作者 王超 侯丽敏 《上海大学学报(自然科学版)》 CAS CSCD 北大核心 2005年第5期475-480,共6页
该文提出了一种高斯混合模型(GMM)参数估计的改进算法.原始的特征向量先经Schmidt正交化消除各维间的相关性,再用数学形态学方法估计出各维概率分布中混合分量的真实个数,最后按真实的混合分量个数用EM算法对各维分别作标量GMM参数估计... 该文提出了一种高斯混合模型(GMM)参数估计的改进算法.原始的特征向量先经Schmidt正交化消除各维间的相关性,再用数学形态学方法估计出各维概率分布中混合分量的真实个数,最后按真实的混合分量个数用EM算法对各维分别作标量GMM参数估计.该方法能缓解GMM传统参数估计算法引起的“不易扩展”的不便.实验结果表明,将其应用于说话人辨认,能在较大幅度提高训练速度的基础上相对传统GMM参数估计方法获得更高的识别率. 展开更多
关键词 说话人辨认 高斯混合模型(gmm) Schmidt正交化 数学形态学
下载PDF
基于PCA和GMM的宽带网络流量异常检测方法
6
作者 周永博 《通信电源技术》 2024年第15期192-194,共3页
随着网络规模和复杂度的不断提升,宽带网络流量异常检测成为保障网络稳定运行的关键。文章研究一种基于主成分分析(Principal Component Analysis,PCA)和高斯混合模型(Gaussian Mixture Model,GMM)的宽带网络流量异常检测方法。首先,利... 随着网络规模和复杂度的不断提升,宽带网络流量异常检测成为保障网络稳定运行的关键。文章研究一种基于主成分分析(Principal Component Analysis,PCA)和高斯混合模型(Gaussian Mixture Model,GMM)的宽带网络流量异常检测方法。首先,利用PCA技术对网络流量数据进行特征提取与降维处理,以降低数据的维度和复杂性;其次,采用GMM对降维后的数据进行分类;最后,使用KDD 99数据集对所提方法进行测试。实验表明,该方法能够有效检测宽带网络中的异常流量,具有较高的适应性和稳定性。 展开更多
关键词 主成分分析(PCA) 高斯混合模型(gmm) 网络流量 异常检测
下载PDF
混合自行车交通流速度分布模型 被引量:6
7
作者 徐程 曲昭伟 +1 位作者 王殿海 金盛 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2017年第7期1331-1338,共8页
针对电动自行车和普通自行车在非机动车道上混合运行的问题,基于实测数据分析混合自行车交通流速度的基本统计特性.通过对多种影响因素的分析,构建基于高斯混合模型(GMM)的速度分布函数,采用期望最大化(EM)算法对模型参数进行最大似然估... 针对电动自行车和普通自行车在非机动车道上混合运行的问题,基于实测数据分析混合自行车交通流速度的基本统计特性.通过对多种影响因素的分析,构建基于高斯混合模型(GMM)的速度分布函数,采用期望最大化(EM)算法对模型参数进行最大似然估计.通过Kolmogorov-Smirnov(K-S)拟合优度检验优化,得到高斯混合模型的最佳组成数.分析不同限速阈值对自行车超速特性的影响.结果表明,利用高斯混合模型能够有效地拟合混合自行车速度.利用三元高斯混合模型能够拟合自由流状态下的速度数据;针对多种交通状态下的数据,须采用五元或六元高斯混合模型进行拟合. 展开更多
关键词 交通工程 混合自行车 速度分布 高斯混合模型(gmm) 期望最大化算法
下载PDF
高斯混合模型下建筑工人高空作业失稳检测方法 被引量:2
8
作者 范文涵 林欣燕 +2 位作者 左超 徐小媛 周建亮 《中国安全科学学报》 CAS CSCD 北大核心 2023年第4期114-120,共7页
为防止施工现场高处坠落事故,实现个性化矫正管理,在考虑个体异质性对运动信号造成的差异化影响基础上,提出一种基于高斯混合模型(GMM)的实时检测方法,可及时识别建筑工人高空作业失稳状态。首先,采用姿态传感器实时采集加速度和角速度... 为防止施工现场高处坠落事故,实现个性化矫正管理,在考虑个体异质性对运动信号造成的差异化影响基础上,提出一种基于高斯混合模型(GMM)的实时检测方法,可及时识别建筑工人高空作业失稳状态。首先,采用姿态传感器实时采集加速度和角速度数据,以刻画建筑工人的高空作业姿态特征;然后,基于GMM算法,建立建筑工人高空作业的个性化失稳检测模型,获得个性化阈值,以判断姿势失稳状态;最后,通过试验对比基于个体数据集和公共数据集2种方式构建的模型。研究结果表明:生成的个性化检测模型在准确度P、召回率R和综合评价指标F 1值上,均远优于公共数据集模型,具有更好的个性化检测效果。该失稳检测方法能够从工人的作业姿态习惯探究个性化的高空失稳风险,促进差异化安全预控和精准化安全培训。 展开更多
关键词 高斯混合模型(gmm) 建筑工人 高空作业 失稳检测 实时检测
下载PDF
基于CFCC和相位信息的鲁棒性说话人辨识 被引量:6
9
作者 李作强 高勇 《计算机工程与应用》 CSCD 北大核心 2015年第17期228-232,共5页
传统的说话人识别中,人们往往认为人耳对相位信息不敏感而忽略了相位信息对语音识别的影响。为了验证相位信息对说话人识别的影响,提出了一种提取相位特征参数的方法。分别在纯净语音和带噪语音条件下,基于高斯混合模型,通过将相位特征... 传统的说话人识别中,人们往往认为人耳对相位信息不敏感而忽略了相位信息对语音识别的影响。为了验证相位信息对说话人识别的影响,提出了一种提取相位特征参数的方法。分别在纯净语音和带噪语音条件下,基于高斯混合模型,通过将相位特征参数与耳蜗倒谱系数(CFCC)相结合,研究了相位信息对说话人辨识性能的影响。实验结果标明:相位信息在说话人识别中也有着重要的作用,将其应用于说话人辨识系统,可明显提高系统的识别率和鲁棒性。 展开更多
关键词 说话人辨识 相位特征参数 耳蜗倒谱系数(CFCC) 高斯混合模型(gmm)
下载PDF
一种区域级运动目标检测方法 被引量:6
10
作者 王欢 任明武 杨静宇 《模式识别与人工智能》 EI CSCD 北大核心 2009年第5期689-696,共8页
传统运动目标检测方法通常在像素或硬性划分的区域上实现.文中使用分水岭变换自动将图像划分成灰度一致性区域,并以一致性区域为基元进行运动目标检测.针对分水岭变换的过分割问题,在多步形态学梯度图像上进行变换.针对运动目标检测的... 传统运动目标检测方法通常在像素或硬性划分的区域上实现.文中使用分水岭变换自动将图像划分成灰度一致性区域,并以一致性区域为基元进行运动目标检测.针对分水岭变换的过分割问题,在多步形态学梯度图像上进行变换.针对运动目标检测的低虚警率和高实时性要求,直接考察待检测图像中每一个一致性区域与一组背景图像中对应区域间的差异程度,设计灰度差异、颜色畸变及相邻区域间的灰度关系准则综合判断各区域是前景还是背景.该方法与流行的检测方法相比具有较低的虚警率,避免区域级检测方法中的硬性分块问题,同时又具有一定的处理速度.多个室内和室外标准图像序列的测试证明该算法的有效性. 展开更多
关键词 分水岭变换 运动目标检测 高斯混合模型(gmm)
原文传递
声纹识别技术在身份验证系统中的应用与优化
11
作者 陈丹丹 邓惠俊 《电声技术》 2024年第3期18-20,共3页
为提升身份验证系统的安全性,研究声纹识别技术在身份验证系统中的应用与优化。首先,提出一种基于声纹识别的身份验证系统框架。其次,针对声纹特征提取方法,重点研究基于梅尔频率倒谱系数(Mel Frequency Ceptral Coefficient,MFCC)的特... 为提升身份验证系统的安全性,研究声纹识别技术在身份验证系统中的应用与优化。首先,提出一种基于声纹识别的身份验证系统框架。其次,针对声纹特征提取方法,重点研究基于梅尔频率倒谱系数(Mel Frequency Ceptral Coefficient,MFCC)的特征提取方法。再次,探讨基于贝叶斯估计的高斯混合模型(Gaussian Mixture Model,GMM)优化方法。最后,进行实验分析,评估识别率、准确率、召回率等性能指标,并与传统GMM方法进行比较。 展开更多
关键词 声纹识别 高斯混合模型(gmm) 贝叶斯估计
下载PDF
基于真实驾驶数据的运动基元提取与再生成 被引量:5
12
作者 王博洋 龚建伟 +1 位作者 张瑞增 陈慧岩 《机械工程学报》 EI CAS CSCD 北大核心 2020年第16期155-165,共11页
类人驾驶系统是通过学习人类驾驶员知识与经验来提升无人驾驶系统适用性与接受度的重要技术途径。为解决驾驶员轨迹和操控层面经验的表述问题,以采集得到的大量真实驾驶数据为依托,提出一种基于轨迹基元与操控基元的分层式驾驶员经验表... 类人驾驶系统是通过学习人类驾驶员知识与经验来提升无人驾驶系统适用性与接受度的重要技术途径。为解决驾驶员轨迹和操控层面经验的表述问题,以采集得到的大量真实驾驶数据为依托,提出一种基于轨迹基元与操控基元的分层式驾驶员经验表述模型。轨迹基元以动态运动基元算法进行表征,并由概率提取算法完成基元从无标签连续轨迹数据中的分割提取。操控基元在轨迹基元的提取分类结果上,利用高斯混合模型完成基元的训练,并利用高斯回归算法完成转向操控序列的预测。结果表明,概率提取算法既利用到了表征与提取之间的相互关联关系,又借助于初始分割点的合理设置,提升了算法的效率并使得提取得到的运动基元符合特定的驾驶假设。此外,所提出的运动基元既能以较高精度完成对驾驶员轨迹和操控层面数据的表征,又具备良好的泛化能力以应对运动基元再生成时在期望位置和时间尺度上的变化需求。最终构建了描述全工况驾驶行为的运动基元库,并大幅提升了运动基元应对不同行车环境时的适用性。 展开更多
关键词 智能车辆 运动基元 驾驶数据 动态运动基元(DMP) 高斯混合模型(gmm) 高斯回归算法(GMR)
原文传递
基于支撑矢量机的汉语方言辨识 被引量:5
13
作者 顾明亮 夏玉果 张长水 《计算机工程与应用》 CSCD 北大核心 2007年第29期210-213,共4页
统计学习理论证明,支撑矢量机是具有高分类能力和高推广性能的优秀分类器。但由于语音的动态时间属性,它很难直接应用到汉语方言辨识领域。论文利用高斯混合模型和语言模型提取等维的全局语言特征,成功解决了支撑矢量机难于直接处理动... 统计学习理论证明,支撑矢量机是具有高分类能力和高推广性能的优秀分类器。但由于语音的动态时间属性,它很难直接应用到汉语方言辨识领域。论文利用高斯混合模型和语言模型提取等维的全局语言特征,成功解决了支撑矢量机难于直接处理动态时间模式的困难,有效地增强了系统的分类能力。实验结果表明,支撑矢量机方法可以比直接用语言模型进行分类决策提高近20%的正确辨识率,比人工神经网络方法也可提高4%的正确辨识率。 展开更多
关键词 方言辨识 支撑矢量机(SVM) 高斯混合模型(gmm)
下载PDF
滚动轴承故障程度评估的AR-GMM方法 被引量:6
14
作者 龙铭 文章 +2 位作者 黄文艺 周建民 周继慧 《机械科学与技术》 CSCD 北大核心 2016年第8期1183-1188,共6页
提出了一种基于AR-GMM的滚动轴承故障程度评估方法,该方法利用自回归模型(AR)提取无故障轴承早期振动信号特征,并建立无故障轴承高斯混合模型(GMM)作为故障程度评估基准。轴承后期振动信号在提取AR特征后导入该基准GMM模型,得到测试样... 提出了一种基于AR-GMM的滚动轴承故障程度评估方法,该方法利用自回归模型(AR)提取无故障轴承早期振动信号特征,并建立无故障轴承高斯混合模型(GMM)作为故障程度评估基准。轴承后期振动信号在提取AR特征后导入该基准GMM模型,得到测试样本与无故障样本之间的量化相似程度。进而以此相似程度值为基础建立自回归对数似然概率值(ARLLP)作为滚动轴承故障程度评估指标。轴承疲劳试验分析表明该指标能够及时有效发现轴承早期故障,并能很好预测跟踪轴承恶化趋势,为视情维修奠定基础。 展开更多
关键词 故障程度评估 视情维修 高斯混合模型(gmm)
下载PDF
基于Gammatone滤波器分解的HRTF和GMM的双耳声源定位算法 被引量:5
15
作者 李如玮 潘冬梅 +1 位作者 张爽 张永亚 《北京工业大学学报》 CAS CSCD 北大核心 2018年第11期1385-1390,共6页
针对数字助听器中现存声源定位算法精确度低和算法复杂度高的问题,提出一种新的双耳声源定位算法.首先,采集到的双耳声源信号通过Gammatone滤波器分解为若干个子带信号,根据能量的大小对数据进行压缩.然后,利用头相关传递函数(head-rela... 针对数字助听器中现存声源定位算法精确度低和算法复杂度高的问题,提出一种新的双耳声源定位算法.首先,采集到的双耳声源信号通过Gammatone滤波器分解为若干个子带信号,根据能量的大小对数据进行压缩.然后,利用头相关传递函数(head-related transfer function,HRTF)中包含的双耳线索,即双耳时间差、双耳声级差及耳间相关性,提取声源位置的特征.最后,声源的位置信息由高斯混合模型(Gaussian mixture model,GMM)分类器识别.实验结果表明,建议的算法具有高精确度、低复杂度及强鲁棒性. 展开更多
关键词 双耳声源定位 头相关函数 高斯混合模型(gmm) Gammatone滤波器 数据压缩 双耳线索
下载PDF
小波包分析及高斯混合模型在汽轮机振动故障诊断中的应用 被引量:5
16
作者 罗绵辉 梁啸 《华电技术》 CAS 2008年第12期21-23,共3页
提出一种利用高斯混合模型对汽轮机振动故障进行诊断的方法。原始的汽轮机振动故障信号用小波包进行分解重构滤波,提取振动信号特征量,然后用特征量来建立高斯混合模型。用每种故障状态的几组数据作训练数据,对每种故障状态建立一个识别... 提出一种利用高斯混合模型对汽轮机振动故障进行诊断的方法。原始的汽轮机振动故障信号用小波包进行分解重构滤波,提取振动信号特征量,然后用特征量来建立高斯混合模型。用每种故障状态的几组数据作训练数据,对每种故障状态建立一个识别元,识别元的参数用EM算法求解最大似然估计,最终将待识别故障数据输入每个识别元,找到最大概率的识别元所对应的故障即为诊断的最后结果。 展开更多
关键词 高斯混合模型(gmm) 故障诊断 小波包分析 EM算法
下载PDF
基于GMM聚类的铁路网络数据风险等级分类方法 被引量:1
17
作者 商婧 王佳宁 +2 位作者 刘旭 李琪 王健 《铁路计算机应用》 2023年第11期39-44,共6页
铁路行业信息基础设施及重要信息系统产生的数据种类繁多、数量庞大且价值密度高,而不同类型或等级的铁路网络数据存在不同级别的安全风险。为了完善铁路网络数据风险评估机制,设计一种基于高斯混合模型(GMM,Gaussian Mixture Model)聚... 铁路行业信息基础设施及重要信息系统产生的数据种类繁多、数量庞大且价值密度高,而不同类型或等级的铁路网络数据存在不同级别的安全风险。为了完善铁路网络数据风险评估机制,设计一种基于高斯混合模型(GMM,Gaussian Mixture Model)聚类的铁路网络数据风险等级分类方法。从数据和风险角度提取关键信息,构建风险信息数据集;通过K-means聚类获得初始聚类中心;基于混合距离计算进行GMM聚类,实现数据风险等级划分。经实验验证,与传统K-means聚类、谱聚类算法相比,GMM聚类算法对铁路网络数据的聚类效果更优,能够更加准确地对铁路网络数据进行风险等级分类,从而为进一步落实铁路网络数据安全管理要求提供重要的技术支撑。 展开更多
关键词 高斯混合模型(gmm) K-MEANS 最大期望(EM)算法 铁路网络 数据风险 风险等级分
下载PDF
高斯混合生成模型检测健康数据异常 被引量:3
18
作者 朱壮壮 周治平 《计算机科学与探索》 CSCD 北大核心 2022年第5期1128-1135,共8页
在智能穿戴设备普及的背景下,运动手环为全面地了解人们的身体状况提供了丰富的信息源,但是其提供的多维活动数据存在未知的异常值,因此需要进行异常值的检测。由于“维度灾难”,通过传统的方法进行密度估计十分困难,导致检测效果不佳... 在智能穿戴设备普及的背景下,运动手环为全面地了解人们的身体状况提供了丰富的信息源,但是其提供的多维活动数据存在未知的异常值,因此需要进行异常值的检测。由于“维度灾难”,通过传统的方法进行密度估计十分困难,导致检测效果不佳。针对该问题,使用了一种高斯混合生成模型(GMGM)健康数据检测方法。首先,该模型利用变分自编码器(VAE)训练原始数据,并且通过降低重构误差提取潜在特征。然后,利用深度信念网络(DBN),通过潜在分布和提取的特征来预测样本的混合成员隶属度。接着,变分自编码器、深度信念网络与高斯混合模型(GMM)共同优化,避免了模型解耦的影响。高斯混合模型预测得到每个数据的样本密度,将密度高于训练阶段阈值的样本视为异常。在ODDS标准数据集上验证模型的性能,结果表明,相比深度自编码器高斯混合模型(DAGMM),GMGM的AUC指标平均提升了5.5个百分点。最后,在真实数据集上的实验结果也表明了该方法的有效性。 展开更多
关键词 变分自编码器(VAE) 深度信念网络(DBN) 高斯混合模型(gmm) 健康数据 异常检测
下载PDF
基于MFCC的汽车敲击异响识别 被引量:3
19
作者 黄凯 郑瑶辰 邓兆祥 《振动与冲击》 EI CSCD 北大核心 2022年第13期275-282,共8页
现阶段,汽车异响的诊断主要依赖有经验的工程师进行主观评判,存在不准确、易错判、易漏判的问题。针对汽车敲击异响实测信号进行统计分析得到梅尔倒谱系数(Mel frequency cepstrum coefficient,MFCC),并以此作为表征异响来源的特征向量... 现阶段,汽车异响的诊断主要依赖有经验的工程师进行主观评判,存在不准确、易错判、易漏判的问题。针对汽车敲击异响实测信号进行统计分析得到梅尔倒谱系数(Mel frequency cepstrum coefficient,MFCC),并以此作为表征异响来源的特征向量,基于最大似然估计法构建其联合概率分布高斯混合模型(Gaussian mixture model,GMM),从而针对未知实测异响信号可利用该GMM模型进行似然判别。指出了说话人识别技术与敲击异响识别的不同之处即Mel三角滤波器个数和离散余弦变换输出系数个数的选取方式,并对方法的可行性进行分析,最后试验加以验证。结果显示此方法的识别率达100%,拒绝率达100%以上,为汽车异响的客观评价方法打下基础。 展开更多
关键词 说话人识别 敲击异响 梅尔倒谱系数(MFCC) 高斯混合模型(gmm)
下载PDF
基于HMM和GMM的维吾尔语联机手写体识别研究 被引量:4
20
作者 许辉 热依曼.吐尔逊 吾守尔.斯拉木 《计算机工程与应用》 CSCD 2014年第11期202-205,222,共5页
给出了一个基于HMM和GMM双引擎识别模型的维吾尔语联机手写体整词识别系统。在GMM部分,系统提取了8-方向特征,生成8-方向特征样式图像、定位空间采样点以及提取模糊的方向特征。在对模型精细化迭代训练之后,得到GMM模型文件。HMM部分,... 给出了一个基于HMM和GMM双引擎识别模型的维吾尔语联机手写体整词识别系统。在GMM部分,系统提取了8-方向特征,生成8-方向特征样式图像、定位空间采样点以及提取模糊的方向特征。在对模型精细化迭代训练之后,得到GMM模型文件。HMM部分,系统采用了笔段特征的方法来获取笔段分段点特征序列,在对模型进行精细化迭代训练后,得到HMM模型文件。将GMM模型文件和HMM模型文件分别打包封装再进行联合封装成字典。在第一期的实验中,系统的识别率达到97%,第二期的实验中,系统的识别率高达99%。 展开更多
关键词 维吾尔文 手写体 隐Markov模型(HMM) 高斯混合模型(gmm)
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部