为提升身份验证系统的安全性,研究声纹识别技术在身份验证系统中的应用与优化。首先,提出一种基于声纹识别的身份验证系统框架。其次,针对声纹特征提取方法,重点研究基于梅尔频率倒谱系数(Mel Frequency Ceptral Coefficient,MFCC)的特...为提升身份验证系统的安全性,研究声纹识别技术在身份验证系统中的应用与优化。首先,提出一种基于声纹识别的身份验证系统框架。其次,针对声纹特征提取方法,重点研究基于梅尔频率倒谱系数(Mel Frequency Ceptral Coefficient,MFCC)的特征提取方法。再次,探讨基于贝叶斯估计的高斯混合模型(Gaussian Mixture Model,GMM)优化方法。最后,进行实验分析,评估识别率、准确率、召回率等性能指标,并与传统GMM方法进行比较。展开更多
针对数字助听器中现存声源定位算法精确度低和算法复杂度高的问题,提出一种新的双耳声源定位算法.首先,采集到的双耳声源信号通过Gammatone滤波器分解为若干个子带信号,根据能量的大小对数据进行压缩.然后,利用头相关传递函数(head-rela...针对数字助听器中现存声源定位算法精确度低和算法复杂度高的问题,提出一种新的双耳声源定位算法.首先,采集到的双耳声源信号通过Gammatone滤波器分解为若干个子带信号,根据能量的大小对数据进行压缩.然后,利用头相关传递函数(head-related transfer function,HRTF)中包含的双耳线索,即双耳时间差、双耳声级差及耳间相关性,提取声源位置的特征.最后,声源的位置信息由高斯混合模型(Gaussian mixture model,GMM)分类器识别.实验结果表明,建议的算法具有高精确度、低复杂度及强鲁棒性.展开更多
现阶段,汽车异响的诊断主要依赖有经验的工程师进行主观评判,存在不准确、易错判、易漏判的问题。针对汽车敲击异响实测信号进行统计分析得到梅尔倒谱系数(Mel frequency cepstrum coefficient,MFCC),并以此作为表征异响来源的特征向量...现阶段,汽车异响的诊断主要依赖有经验的工程师进行主观评判,存在不准确、易错判、易漏判的问题。针对汽车敲击异响实测信号进行统计分析得到梅尔倒谱系数(Mel frequency cepstrum coefficient,MFCC),并以此作为表征异响来源的特征向量,基于最大似然估计法构建其联合概率分布高斯混合模型(Gaussian mixture model,GMM),从而针对未知实测异响信号可利用该GMM模型进行似然判别。指出了说话人识别技术与敲击异响识别的不同之处即Mel三角滤波器个数和离散余弦变换输出系数个数的选取方式,并对方法的可行性进行分析,最后试验加以验证。结果显示此方法的识别率达100%,拒绝率达100%以上,为汽车异响的客观评价方法打下基础。展开更多
文摘针对数字助听器中现存声源定位算法精确度低和算法复杂度高的问题,提出一种新的双耳声源定位算法.首先,采集到的双耳声源信号通过Gammatone滤波器分解为若干个子带信号,根据能量的大小对数据进行压缩.然后,利用头相关传递函数(head-related transfer function,HRTF)中包含的双耳线索,即双耳时间差、双耳声级差及耳间相关性,提取声源位置的特征.最后,声源的位置信息由高斯混合模型(Gaussian mixture model,GMM)分类器识别.实验结果表明,建议的算法具有高精确度、低复杂度及强鲁棒性.