期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
马尔可夫随机场的空间相关模型在非负矩阵分解线性解混中的应用 被引量:3
1
作者 袁博 《计算机应用》 CSCD 北大核心 2017年第12期3563-3568,共6页
针对基于非负矩阵分解(NMF)的高光谱解混存在的初始化与"局部极小"等问题,提出一种基于马尔可夫随机场(MRF)的空间相关约束NMF线性解混算法(MRF-NMF)。首先,通过基于最小误差的高光谱信号识别(Hy Sime)法估算端元数量,同时利... 针对基于非负矩阵分解(NMF)的高光谱解混存在的初始化与"局部极小"等问题,提出一种基于马尔可夫随机场(MRF)的空间相关约束NMF线性解混算法(MRF-NMF)。首先,通过基于最小误差的高光谱信号识别(Hy Sime)法估算端元数量,同时利用顶点成分分析(VCA)和全约束最小二乘法(FCLS)初始化端元矩阵与丰度矩阵;其次,利用MRF模型建立描述地物空间分布规律的能量函数,以此描述地物分布的空间相关特征;最后,将基于MRF的空间相关约束函数与NMF标准目标函数以交替迭代的形式参与解混,得出高光谱数据的端元信息与丰度分解结果。理论分析和真实数据实验结果表明,在高光谱数据空间相关程度较低的情况下,相比最小体积约束的NMF(MVC-NMF)、分段平滑和稀疏约束的NMF(PSNMFSC)和交互投影子梯度非负矩阵分解(APS-NMF)三种参考算法,所提算法的端元分解精度仍分别提高了7.82%、12.4%和10.1%,其丰度分解精度仍分别提高了8.34%、12.6%和9.87%。MRF-NMF能够弥补NMF对于空间相关特征描述能力的不足,减小解混结果中地物的空间能量分布误差。 展开更多
关键词 非负矩阵分 光谱线 空间相关 马尔可夫随机场 交替迭代 空间能量
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部