Influence of high light stress on the photosynthesis of flag leaves of indica subspecies (cv. “Shanyou 63', sensitive to photoinhibition) and japonica subspecies (cv. “Wuyujing', resistant to photoin...Influence of high light stress on the photosynthesis of flag leaves of indica subspecies (cv. “Shanyou 63', sensitive to photoinhibition) and japonica subspecies (cv. “Wuyujing', resistant to photoinhibition) of rice ( Oryza sativa L.) was comparatively investigated. In both cultivars of rice, the excitation energy distribution between two photosystems was altered and the excitation energy transfer from light harvesting chlorophyll protein complexes to PSⅡ was inhibited by high light stress. These decreases were more pronounced in indica rice cultivar as compared to japonica one. The analysis of mild SDS_PAGE showed that in indica rice, high light stress almost disaggregated the trimer of light harvesting chlorophyll protein complexes of PSⅡ (LHC Ⅱ 1). The stress reduced the contents of internal antennae chlorophyll protein complexes of PSⅡ (CPa), light harvesting chlorophyll protein of PSⅠ (CPⅠa) and Chl a protein complex of PSⅠ reaction center (CPⅠ) as well as dimer of LHCⅡ (LHCⅡ 2) in indica rice. In japonica subspecies, however, high light stress depressed the contents of LHCⅡ 1, CPa and CPⅠa, but slightly impacted on CPⅠ content. Moreover, the increase in the contents of monomer of LHCⅡ by high light stress was found in both subspecies. In consistent with above results, analysis of polypeptide indicated that the amounts of 27 kD and 25 kD polypeptide of LHCⅡ in particular, as well as that of 21 kD polypeptide of CPⅠa were reduced by high light stress in both subspecies. It was found that, comparing with japonica rice, the stress pronouncedly diminished 43 kD and 47 kD proteins of CPa and 23 kD extrisic protein in indica rice.展开更多
In the present study, we investigated the changes of photosynthesis, chlorophyll fluorescence and the content of carotenoid pigments in rice (Oryza sativa L.) seedling leaves and their responses to high light. The res...In the present study, we investigated the changes of photosynthesis, chlorophyll fluorescence and the content of carotenoid pigments in rice (Oryza sativa L.) seedling leaves and their responses to high light. The results showed that the rate of photosynthesis, the contents of individual and total carotenoids and the pool size of xanthophyll cycle decreased with age increasing of the leaf. When the leaves were exposed to high light for 2 h, the qN of mature leaf (5th leaf) increased more significantly than that of younger (6th leaf) and older leaves (3rd and 4th leaf). Comparing with the leaves before exposure to high light, the excitation pressure on PSⅡ (1- qP ) increased by 44%, 57%, 19% and 45% in the 3rd, 4th, 5th and 6th leaf under high light, respectively. The highest content of carotenoids and the greatest conversion of violaxanthin to zeaxanthin were found in the 5th leaf, and it was consistent with the 5th leaf exhibiting the strongest resistance to high light. Our results suggested that the ability of rice leaf to resist photoinhibition is related to the level of carotenoids and the ability of carotenoids biosynthesis.展开更多
近日,Journal of Biological Chemistry (JBC)在线发表了西北农林科技大学生命科学学院/旱区作物逆境生物学国家重点实验室郁飞教授团队的研究论文The chloroplast metalloproteases VAR2 and EGY1 act synergistically to regulate chl...近日,Journal of Biological Chemistry (JBC)在线发表了西北农林科技大学生命科学学院/旱区作物逆境生物学国家重点实验室郁飞教授团队的研究论文The chloroplast metalloproteases VAR2 and EGY1 act synergistically to regulate chloroplast development in Arabidopsis,报道了该团队在高等植物叶绿体发育及植物应对高光胁迫调控机制方面取得的最新进展。展开更多
文摘Influence of high light stress on the photosynthesis of flag leaves of indica subspecies (cv. “Shanyou 63', sensitive to photoinhibition) and japonica subspecies (cv. “Wuyujing', resistant to photoinhibition) of rice ( Oryza sativa L.) was comparatively investigated. In both cultivars of rice, the excitation energy distribution between two photosystems was altered and the excitation energy transfer from light harvesting chlorophyll protein complexes to PSⅡ was inhibited by high light stress. These decreases were more pronounced in indica rice cultivar as compared to japonica one. The analysis of mild SDS_PAGE showed that in indica rice, high light stress almost disaggregated the trimer of light harvesting chlorophyll protein complexes of PSⅡ (LHC Ⅱ 1). The stress reduced the contents of internal antennae chlorophyll protein complexes of PSⅡ (CPa), light harvesting chlorophyll protein of PSⅠ (CPⅠa) and Chl a protein complex of PSⅠ reaction center (CPⅠ) as well as dimer of LHCⅡ (LHCⅡ 2) in indica rice. In japonica subspecies, however, high light stress depressed the contents of LHCⅡ 1, CPa and CPⅠa, but slightly impacted on CPⅠ content. Moreover, the increase in the contents of monomer of LHCⅡ by high light stress was found in both subspecies. In consistent with above results, analysis of polypeptide indicated that the amounts of 27 kD and 25 kD polypeptide of LHCⅡ in particular, as well as that of 21 kD polypeptide of CPⅠa were reduced by high light stress in both subspecies. It was found that, comparing with japonica rice, the stress pronouncedly diminished 43 kD and 47 kD proteins of CPa and 23 kD extrisic protein in indica rice.
文摘In the present study, we investigated the changes of photosynthesis, chlorophyll fluorescence and the content of carotenoid pigments in rice (Oryza sativa L.) seedling leaves and their responses to high light. The results showed that the rate of photosynthesis, the contents of individual and total carotenoids and the pool size of xanthophyll cycle decreased with age increasing of the leaf. When the leaves were exposed to high light for 2 h, the qN of mature leaf (5th leaf) increased more significantly than that of younger (6th leaf) and older leaves (3rd and 4th leaf). Comparing with the leaves before exposure to high light, the excitation pressure on PSⅡ (1- qP ) increased by 44%, 57%, 19% and 45% in the 3rd, 4th, 5th and 6th leaf under high light, respectively. The highest content of carotenoids and the greatest conversion of violaxanthin to zeaxanthin were found in the 5th leaf, and it was consistent with the 5th leaf exhibiting the strongest resistance to high light. Our results suggested that the ability of rice leaf to resist photoinhibition is related to the level of carotenoids and the ability of carotenoids biosynthesis.
文摘近日,Journal of Biological Chemistry (JBC)在线发表了西北农林科技大学生命科学学院/旱区作物逆境生物学国家重点实验室郁飞教授团队的研究论文The chloroplast metalloproteases VAR2 and EGY1 act synergistically to regulate chloroplast development in Arabidopsis,报道了该团队在高等植物叶绿体发育及植物应对高光胁迫调控机制方面取得的最新进展。