期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
鉴别原发性骨肿瘤骨样和软骨样基质矿化:基于CT和临床特征的深度学习融合模型的多中心回顾性研究
1
作者 刘操林 邹青清 +5 位作者 王梦虹 杨芹枚 宋丽文 陆紫箫 冯前进 赵英华 《南方医科大学学报》 CAS CSCD 北大核心 2024年第12期2412-2420,共9页
目的基于CT图像和临床特征构建深度学习模型,鉴别原发性骨肿瘤骨样和软骨样基质矿化,以提示成骨性或成软骨性骨肿瘤的组织来源,辅助两者的鉴别诊断。方法回顾性搜集2010年1月~2021年8月来自广东省4个医疗中心的276例病理证实的原发性骨... 目的基于CT图像和临床特征构建深度学习模型,鉴别原发性骨肿瘤骨样和软骨样基质矿化,以提示成骨性或成软骨性骨肿瘤的组织来源,辅助两者的鉴别诊断。方法回顾性搜集2010年1月~2021年8月来自广东省4个医疗中心的276例病理证实的原发性骨肿瘤患者CT平扫图像。采用卷积神经网络(CNN)作为深度学习架构,通过迁移学习确定最佳深度学习基线模型(R-Net),通过算法改进获得优化后的深度学习模型(S-Net),采用多元逻辑回归分析筛选性别、年龄、矿化位置和病理性骨折等临床特征,将临床特征与影像特征连接构建深度学习融合模型(SC-Net)。对比深度学习模型与机器学习模型、放射科医生的诊断表现。用受试者特征曲线(ROC)下面积(AUC)和F1分数评价模型分类性能。结果外部测试集显示:深度学习融合模型SC-Net的表现最佳,AUC为0.901(95%CI:0.803~1.00),准确度为83.7%(95%CI:69.3%~93.2%),F1分数为0.857,性能优于深度学习模型R-Net、深度学习模型S-Net、机器学习模型和机器学习融合模型,AUC分别为0.768、0.818、0.761、0.791,准确度为69.8%、76.7%、72.1%、74.4%,F1分数为0.755、0.828、0.700、0.732;且深度学习融合模型SC-Net总体分类性能超越了放射科医生诊断水平。结论基于多中心的CT图像和临床信息的深度学习融合模型,成功实现了对原发性骨肿瘤骨样和软骨样基质矿化的分类。尤其对于影像表现不典型矿化病灶的鉴别优于机器学习模型和放射科医生视觉诊断,具有一定的临床应用价值。 展开更多
关键词 CT图像 深度学习 原发性肿瘤 基质矿化 基质矿化
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部