期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于K-均值聚类的风能短期功率预测
1
作者
颜晓娟
龚仁喜
《智能电网(汉斯)》
2012年第2期41-44,共4页
风电场输出功率的预测对降低风电场运行成本及合理安排电力系统调度具有重要意义。提高风能功率的预测精度,可以有效地减轻风电对电网的影响,同时提高风电场在电力市场中的竞争能力。在建立风能短期功率预测模型时,由于样本的选取对预...
风电场输出功率的预测对降低风电场运行成本及合理安排电力系统调度具有重要意义。提高风能功率的预测精度,可以有效地减轻风电对电网的影响,同时提高风电场在电力市场中的竞争能力。在建立风能短期功率预测模型时,由于样本的选取对预测的精度有较大的影响,因此研究样本的选取方法具有重要意义。本文提出了一种利用K-均值算法对历史功率数据样本进行聚类,根据得到的聚类结果训练学习向量量化(LVQ)神经网络,利用训练好的神经网络对待预测数据进行自动分类,最后使用最小二乘法建立风能功率预测模型的方法。通过实验验证了该方法的有效性和可行性,对于风电调度具有一定的参考意义。
展开更多
关键词
K-均值聚类
LVQ
风能
短期
功率
预测
下载PDF
职称材料
题名
基于K-均值聚类的风能短期功率预测
1
作者
颜晓娟
龚仁喜
机构
广西大学电气工程学院
出处
《智能电网(汉斯)》
2012年第2期41-44,共4页
文摘
风电场输出功率的预测对降低风电场运行成本及合理安排电力系统调度具有重要意义。提高风能功率的预测精度,可以有效地减轻风电对电网的影响,同时提高风电场在电力市场中的竞争能力。在建立风能短期功率预测模型时,由于样本的选取对预测的精度有较大的影响,因此研究样本的选取方法具有重要意义。本文提出了一种利用K-均值算法对历史功率数据样本进行聚类,根据得到的聚类结果训练学习向量量化(LVQ)神经网络,利用训练好的神经网络对待预测数据进行自动分类,最后使用最小二乘法建立风能功率预测模型的方法。通过实验验证了该方法的有效性和可行性,对于风电调度具有一定的参考意义。
关键词
K-均值聚类
LVQ
风能
短期
功率
预测
分类号
F2 [经济管理—国民经济]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于K-均值聚类的风能短期功率预测
颜晓娟
龚仁喜
《智能电网(汉斯)》
2012
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部