期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于K-均值聚类的风能短期功率预测
1
作者 颜晓娟 龚仁喜 《智能电网(汉斯)》 2012年第2期41-44,共4页
风电场输出功率的预测对降低风电场运行成本及合理安排电力系统调度具有重要意义。提高风能功率的预测精度,可以有效地减轻风电对电网的影响,同时提高风电场在电力市场中的竞争能力。在建立风能短期功率预测模型时,由于样本的选取对预... 风电场输出功率的预测对降低风电场运行成本及合理安排电力系统调度具有重要意义。提高风能功率的预测精度,可以有效地减轻风电对电网的影响,同时提高风电场在电力市场中的竞争能力。在建立风能短期功率预测模型时,由于样本的选取对预测的精度有较大的影响,因此研究样本的选取方法具有重要意义。本文提出了一种利用K-均值算法对历史功率数据样本进行聚类,根据得到的聚类结果训练学习向量量化(LVQ)神经网络,利用训练好的神经网络对待预测数据进行自动分类,最后使用最小二乘法建立风能功率预测模型的方法。通过实验验证了该方法的有效性和可行性,对于风电调度具有一定的参考意义。 展开更多
关键词 K-均值聚类 LVQ 风能短期功率预测
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部