针对风电场监控和数据采集系统(supervisory control and data acquisition, SCADA)数据在采集传输过程中常遇到的数据丢失问题,提出一种新的自适应轻量化生成对抗网络插补策略(adaptive transformer slim GAIN, ATSGAIN),旨在增强数据...针对风电场监控和数据采集系统(supervisory control and data acquisition, SCADA)数据在采集传输过程中常遇到的数据丢失问题,提出一种新的自适应轻量化生成对抗网络插补策略(adaptive transformer slim GAIN, ATSGAIN),旨在增强数据完整性. AT-SGAIN通过简化GAIN模型结构,显著提高了计算效率;采用双判别器结构,分别用于真实数据和生成数据的鉴别,保障了速度提升过程中插补精度的维护.算法集成了Transformer (变压器模型)编码器,增强了对风电数据时间序列特征的捕捉能力,并通过自适应双分支注意力机制,精准调整通道和空间注意力权重,提升了网络对局部信息的敏感度.实验结果证明,所提算法在多项对比测试中均显著优于现有经典方法.展开更多
文摘针对风电场监控和数据采集系统(supervisory control and data acquisition, SCADA)数据在采集传输过程中常遇到的数据丢失问题,提出一种新的自适应轻量化生成对抗网络插补策略(adaptive transformer slim GAIN, ATSGAIN),旨在增强数据完整性. AT-SGAIN通过简化GAIN模型结构,显著提高了计算效率;采用双判别器结构,分别用于真实数据和生成数据的鉴别,保障了速度提升过程中插补精度的维护.算法集成了Transformer (变压器模型)编码器,增强了对风电数据时间序列特征的捕捉能力,并通过自适应双分支注意力机制,精准调整通道和空间注意力权重,提升了网络对局部信息的敏感度.实验结果证明,所提算法在多项对比测试中均显著优于现有经典方法.