In order to better understand the leaching process of rare earth (RE) and aluminum (Al) from the weathered crust elutiondepositedRE ore, the mass transfer of RE and Al in column leaching was investigated using the...In order to better understand the leaching process of rare earth (RE) and aluminum (Al) from the weathered crust elutiondepositedRE ore, the mass transfer of RE and Al in column leaching was investigated using the chromatographic plate theory. Theresults show that a higher initial ammonium concentration in a certain range can enhance the mass transfer process. pH of leachingagent in the range of 2 to 8 almost has no effect on the mass transfer efficiency of RE, but plays a positive role in the mass transferefficiency of Al under strong acidic condition (pH〈4). There is an optimum flow rate that makes the highest mass transfer efficiency.The optimum leaching condition of RE is the leaching agent pH of 4?8, ammonium concentration of 0.4 mol/L and flow rate of0.5 mL/min. The mass transfer efficiencies of RE and Al both follow the order: (NH4)2SO4〈NH4Cl〈NH4NO3, implying thecomplexing ability of anion.展开更多
The ion exchange model of the leaching process was determined via batch leaching experiments using the Kerr model, with the selectivity coefficient experimentally determined to be 12.59×10^-10 L^2/g^2. Solute tra...The ion exchange model of the leaching process was determined via batch leaching experiments using the Kerr model, with the selectivity coefficient experimentally determined to be 12.59×10^-10 L^2/g^2. Solute transport laws of ammonium ions (NH4 +) and rare earth ions (RE^3+) in column leaching were described by the convection-dispersion equation (CDE). The source and sink in the CDE were determined by the Kerr model. The CDE with strong nonlinearity was solved using the sequential non-iterative method. Compared with the breakthrough curve of RE^3+, the correlation coefficient between the simulated and experimental curves reached 0.8724. Therefore, this method can simulate the one-dimensional column leaching of weathered crust elution-deposited rare earth ore. Moreover, the effects of different concentrations of ammonium sulfate ((NH4)2SO4) solution on the leaching rate of rare earth were analyzed. The optimal concentration of the (NH4)2SO4 solution had a linear relationship with the rare earth grade.展开更多
基金Projects(51274152,41472071)supported by the National Natural Science Foundation of ChinaProject(T201506)supported by the Program for Excellent Young Scientific and Technological Innovation Team of Hubei Provincial Department of Education,China
文摘In order to better understand the leaching process of rare earth (RE) and aluminum (Al) from the weathered crust elutiondepositedRE ore, the mass transfer of RE and Al in column leaching was investigated using the chromatographic plate theory. Theresults show that a higher initial ammonium concentration in a certain range can enhance the mass transfer process. pH of leachingagent in the range of 2 to 8 almost has no effect on the mass transfer efficiency of RE, but plays a positive role in the mass transferefficiency of Al under strong acidic condition (pH〈4). There is an optimum flow rate that makes the highest mass transfer efficiency.The optimum leaching condition of RE is the leaching agent pH of 4?8, ammonium concentration of 0.4 mol/L and flow rate of0.5 mL/min. The mass transfer efficiencies of RE and Al both follow the order: (NH4)2SO4〈NH4Cl〈NH4NO3, implying thecomplexing ability of anion.
基金Projects(51664015,41602311,51774156) supported by the National Natural Science Foundation of China
文摘The ion exchange model of the leaching process was determined via batch leaching experiments using the Kerr model, with the selectivity coefficient experimentally determined to be 12.59×10^-10 L^2/g^2. Solute transport laws of ammonium ions (NH4 +) and rare earth ions (RE^3+) in column leaching were described by the convection-dispersion equation (CDE). The source and sink in the CDE were determined by the Kerr model. The CDE with strong nonlinearity was solved using the sequential non-iterative method. Compared with the breakthrough curve of RE^3+, the correlation coefficient between the simulated and experimental curves reached 0.8724. Therefore, this method can simulate the one-dimensional column leaching of weathered crust elution-deposited rare earth ore. Moreover, the effects of different concentrations of ammonium sulfate ((NH4)2SO4) solution on the leaching rate of rare earth were analyzed. The optimal concentration of the (NH4)2SO4 solution had a linear relationship with the rare earth grade.