期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于频域通道注意力的YOLOv3网络的雾天海洋图像船舶检测
被引量:
2
1
作者
叶乐
李朝锋
《上海海事大学学报》
北大核心
2023年第2期18-24,共7页
为解决在雾天背景下现有的船舶检测算法准确率低、召回率不高的问题,在YOLOv3网络的特征提取模块加入空间金字塔池化模块用以丰富特征图的表达能力,在特征融合模块引入频域通道注意力机制来抑制背景噪声,在预测模块采用K均值算法重新设...
为解决在雾天背景下现有的船舶检测算法准确率低、召回率不高的问题,在YOLOv3网络的特征提取模块加入空间金字塔池化模块用以丰富特征图的表达能力,在特征融合模块引入频域通道注意力机制来抑制背景噪声,在预测模块采用K均值算法重新设计预测锚框大小以适应待检测目标的形状。实验结果表明:基于频域通道注意力的YOLOv3网络在雾天背景下对船舶的检测精度更高,在测试集上平均精确率可达到92.98%,准确率可达到93.06%,召回率可达到92.25%;检测速度可达到61帧/s。本文算法满足船舶实时检测的需求,为未来智能船舶的发展提出了一种兼顾准确率和实时性的船舶检测方法。
展开更多
关键词
船舶检测
卷积神经网络
频域
通道
注意力
机制
YOLOv3
下载PDF
职称材料
题名
基于频域通道注意力的YOLOv3网络的雾天海洋图像船舶检测
被引量:
2
1
作者
叶乐
李朝锋
机构
上海海事大学物流科学与工程研究院
出处
《上海海事大学学报》
北大核心
2023年第2期18-24,共7页
文摘
为解决在雾天背景下现有的船舶检测算法准确率低、召回率不高的问题,在YOLOv3网络的特征提取模块加入空间金字塔池化模块用以丰富特征图的表达能力,在特征融合模块引入频域通道注意力机制来抑制背景噪声,在预测模块采用K均值算法重新设计预测锚框大小以适应待检测目标的形状。实验结果表明:基于频域通道注意力的YOLOv3网络在雾天背景下对船舶的检测精度更高,在测试集上平均精确率可达到92.98%,准确率可达到93.06%,召回率可达到92.25%;检测速度可达到61帧/s。本文算法满足船舶实时检测的需求,为未来智能船舶的发展提出了一种兼顾准确率和实时性的船舶检测方法。
关键词
船舶检测
卷积神经网络
频域
通道
注意力
机制
YOLOv3
Keywords
ship detection
convolutional neural network
frequency channel attention mechanism
YOLOv3
分类号
U675.79 [交通运输工程—船舶及航道工程]
TP391.41 [交通运输工程—船舶与海洋工程]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于频域通道注意力的YOLOv3网络的雾天海洋图像船舶检测
叶乐
李朝锋
《上海海事大学学报》
北大核心
2023
2
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部