期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
图神经网络加速结构综述 被引量:7
1
作者 李涵 严明玉 +4 位作者 吕征阳 李文明 叶笑春 范东睿 唐志敏 《计算机研究与发展》 EI CSCD 北大核心 2021年第6期1204-1229,共26页
近年来,新兴的图神经网络因其强大的图学习和推理能力,得到学术界和工业界的广泛关注,被认为是推动人工智能领域迈入“认知智能”阶段的核心力量.图神经网络融合传统图计算和神经网络的执行过程,形成了不规则与规则的计算和访存行为共... 近年来,新兴的图神经网络因其强大的图学习和推理能力,得到学术界和工业界的广泛关注,被认为是推动人工智能领域迈入“认知智能”阶段的核心力量.图神经网络融合传统图计算和神经网络的执行过程,形成了不规则与规则的计算和访存行为共存的混合执行模式.传统处理器结构设计以及面向图计算和神经网络的加速结构不能同时应对2种对立的执行行为,无法满足图神经网络的加速需求.为解决上述问题,面向图神经网络应用的专用加速结构不断涌现,它们为图神经网络定制计算硬件单元和片上存储层次,优化计算和访存行为,取得了良好的加速效果.以图神经网络执行行为带来的加速结构设计挑战为出发点,从整体结构设计以及计算、片上访存、片外访存层次对该领域的关键优化技术进行详实而系统地分析与介绍.最后还从不同角度对图神经网络加速结构设计的未来方向进行了展望,期望能为该领域的研究人员带来一定的启发. 展开更多
关键词 图神经网络 混合执行模式 加速结构 人工智能 领域专用架构
下载PDF
基于RISC-V的卷积神经网络专用指令集处理器 被引量:4
2
作者 廖汉松 吴朝晖 李斌 《计算机工程》 CAS CSCD 北大核心 2021年第7期196-204,共9页
针对x86和ARM商用架构CPU因专利、授权导致定制成本过高和灵活性不够的问题,面向物联网领域提出一种基于RISC-V开源指令集的卷积神经网络(CNN)专用指令集处理器。通过自定义拓展指令调用加速器对轻量化CNN中的卷积和池化操作进行加速,... 针对x86和ARM商用架构CPU因专利、授权导致定制成本过高和灵活性不够的问题,面向物联网领域提出一种基于RISC-V开源指令集的卷积神经网络(CNN)专用指令集处理器。通过自定义拓展指令调用加速器对轻量化CNN中的卷积和池化操作进行加速,提高终端设备能效。在此过程中,配置CNN各层信息控制加速器进行分组运算,以适应不同大小的输入数据,同时调整加速器的数据通路,对耗时操作进行单独或结合运算,以适应不同的轻量化网络。FPGA平台验证结果表明,该处理器在100 MHz工作频率下推理Squeeze Net网络,耗时约40.89 ms,功耗为1.966 W,较手机处理器单核计算速度更快,与AMD Ryzen7 3700X、NVIDIA RTX2070 Super和Qualcomm Snapdragon 835平台相比,其消耗资源少、功耗低,在性能功耗比上也具有优势。 展开更多
关键词 RISC-V指令集 卷积神经网络 领域专用架构 专用指令集处理器 硬件加速
下载PDF
计算体系架构研究综述与思考 被引量:3
3
作者 高彦钊 邬江兴 +3 位作者 刘勤让 沈剑良 宋克 张帆 《中国科学:信息科学》 CSCD 北大核心 2022年第3期377-398,共22页
随着摩尔定律(Moore's law)与迪纳德(Dennard)缩放定律逐步走向终结,依靠集成电路制程工艺的进步提升计算系统性能与效能越来越困难,计算体系架构的演进成为了未来计算系统发展的重要技术途径.本文首先从应用适应性、计算驱动方式... 随着摩尔定律(Moore's law)与迪纳德(Dennard)缩放定律逐步走向终结,依靠集成电路制程工艺的进步提升计算系统性能与效能越来越困难,计算体系架构的演进成为了未来计算系统发展的重要技术途径.本文首先从应用适应性、计算驱动方式、系统重心变化、计算核心构成,以及计算逻辑使用等不同的角度回顾了体系架构的发展历程,总结了不同体系架构的优缺点;然后着重分析了在人工智能、大数据等应用飞速发展的条件下未来计算系统的能力需求特征;最后提出了软件定义计算体系架构,并梳理了其重点研究内容与关键技术,为未来计算体系架构的发展提供了一条可行的技术途径. 展开更多
关键词 体系架构 软件定义计算 领域专用架构 异构计算 可重构计算
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部