基于密度的聚类算法具有挖掘任意形状聚类和处理"噪声"数据等优势,同时也存在时间消耗大、参数问题局限及输入顺序敏感等缺陷。为此,文章提出一种基于层次树的密度聚类算法DCHT(Density Cluste-ring Based on Hierarchical Tr...基于密度的聚类算法具有挖掘任意形状聚类和处理"噪声"数据等优势,同时也存在时间消耗大、参数问题局限及输入顺序敏感等缺陷。为此,文章提出一种基于层次树的密度聚类算法DCHT(Density Cluste-ring Based on Hierarchical Tree),以层次树描述子聚类信息,动态调整密度参数,基于密度探测树结构中相邻子聚类得到最终的聚类簇。理论分析和实验结果表明,该算法适用于大规模、高维数据,并具有动态调整参数和屏蔽输入顺序敏感性的优点。展开更多
文摘基于密度的聚类算法具有挖掘任意形状聚类和处理"噪声"数据等优势,同时也存在时间消耗大、参数问题局限及输入顺序敏感等缺陷。为此,文章提出一种基于层次树的密度聚类算法DCHT(Density Cluste-ring Based on Hierarchical Tree),以层次树描述子聚类信息,动态调整密度参数,基于密度探测树结构中相邻子聚类得到最终的聚类簇。理论分析和实验结果表明,该算法适用于大规模、高维数据,并具有动态调整参数和屏蔽输入顺序敏感性的优点。