期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
支持向量机应用于语音情感识别的研究
被引量:
10
1
作者
张石清
赵知劲
+1 位作者
戴育良
杨广映
《声学技术》
CSCD
北大核心
2008年第1期87-90,共4页
为了有效识别包含在语音信号中情感信息的类型,提出一种将支持向量机应用于语音情感识别的新方法。利用支持向量机把提取的韵律情感特征数据映射到高维空间,从而构建最优分类超平面实现对汉语普通话中生气、高兴、悲伤、惊奇4种主要情...
为了有效识别包含在语音信号中情感信息的类型,提出一种将支持向量机应用于语音情感识别的新方法。利用支持向量机把提取的韵律情感特征数据映射到高维空间,从而构建最优分类超平面实现对汉语普通话中生气、高兴、悲伤、惊奇4种主要情感类型的识别。计算机仿真实验结果表明,与已有的多种语音情感识别方法相比,支持向量机对情感识别取得的识别效果优于其他方法。
展开更多
关键词
支持向量机
情感
识别
韵律
情感
特征
下载PDF
职称材料
题名
支持向量机应用于语音情感识别的研究
被引量:
10
1
作者
张石清
赵知劲
戴育良
杨广映
机构
杭州电子科技大学
台州学院物理与电子工程学院
出处
《声学技术》
CSCD
北大核心
2008年第1期87-90,共4页
基金
浙江省教育厅高校青年教师资助(2005)
文摘
为了有效识别包含在语音信号中情感信息的类型,提出一种将支持向量机应用于语音情感识别的新方法。利用支持向量机把提取的韵律情感特征数据映射到高维空间,从而构建最优分类超平面实现对汉语普通话中生气、高兴、悲伤、惊奇4种主要情感类型的识别。计算机仿真实验结果表明,与已有的多种语音情感识别方法相比,支持向量机对情感识别取得的识别效果优于其他方法。
关键词
支持向量机
情感
识别
韵律
情感
特征
Keywords
support vector machine
emotion recognition
prosody emotional features
分类号
TN912.34 [电子电信—通信与信息系统]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
支持向量机应用于语音情感识别的研究
张石清
赵知劲
戴育良
杨广映
《声学技术》
CSCD
北大核心
2008
10
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部