国际上对自动语种识别进行了广泛的研究,提出了各种各样的方法,美国国家标准技术研究所(NIST)多年的评测表明,基于并行音素识别(parallel phoneme recognition language modeling,PPRLM)的方法取得了很好的性能。该文提出了一种基于多...国际上对自动语种识别进行了广泛的研究,提出了各种各样的方法,美国国家标准技术研究所(NIST)多年的评测表明,基于并行音素识别(parallel phoneme recognition language modeling,PPRLM)的方法取得了很好的性能。该文提出了一种基于多种语言的音素识别方法的自动语种识别系统,系统中Multilingual音素集是使用基于数据驱动聚类获得。通过真实环境电话语音测试表明,该方法在只使用了很少的识别时间的情况下,获得了跟传统的PPRLM系统可比的识别正确率。同时经过与PPRLM系统融合后,获得了更好的性能,跟其他主流的几种语种识别方法也有可比的性能。展开更多
文摘国际上对自动语种识别进行了广泛的研究,提出了各种各样的方法,美国国家标准技术研究所(NIST)多年的评测表明,基于并行音素识别(parallel phoneme recognition language modeling,PPRLM)的方法取得了很好的性能。该文提出了一种基于多种语言的音素识别方法的自动语种识别系统,系统中Multilingual音素集是使用基于数据驱动聚类获得。通过真实环境电话语音测试表明,该方法在只使用了很少的识别时间的情况下,获得了跟传统的PPRLM系统可比的识别正确率。同时经过与PPRLM系统融合后,获得了更好的性能,跟其他主流的几种语种识别方法也有可比的性能。