期刊文献+
共找到122篇文章
< 1 2 7 >
每页显示 20 50 100
多值映像的变分不等式及其对非线性规划和鞍点问题的应用 被引量:18
1
作者 张石生 舒永录 《应用数学学报》 CSCD 北大核心 1991年第1期32-39,共8页
一、引言 变分不等式理论及应用的研究是近代非线性分析理论及应用研究的重要组成部分。变分不等式理论在控制论、优化理论、微分方程、数理经济、力学等方面有重要的应用。近年来变分不等式理论及应用的研究有重要的发展(见文献[1,2,5,... 一、引言 变分不等式理论及应用的研究是近代非线性分析理论及应用研究的重要组成部分。变分不等式理论在控制论、优化理论、微分方程、数理经济、力学等方面有重要的应用。近年来变分不等式理论及应用的研究有重要的发展(见文献[1,2,5,7,8])。1982年Chan。 展开更多
关键词 变分不等式 非线性规划 鞍点问题
原文传递
求解鞍点问题的一般加速超松弛方法 被引量:10
2
作者 邵新慧 沈海龙 +1 位作者 李长军 张铁 《数值计算与计算机应用》 CSCD 2006年第4期241-248,共8页
针对大型稀疏鞍点问题给出了一种含有待定参数的新迭代解法,将其称之为一般加速松弛方法,简记为GAOR方法.当参数α=时,新迭代方法是变成由Golub等人给出的SOR-Like方法.该迭代法的构成是基于对系数矩阵进行的一种分裂.迭代法需要选... 针对大型稀疏鞍点问题给出了一种含有待定参数的新迭代解法,将其称之为一般加速松弛方法,简记为GAOR方法.当参数α=时,新迭代方法是变成由Golub等人给出的SOR-Like方法.该迭代法的构成是基于对系数矩阵进行的一种分裂.迭代法需要选择一个预处理矩阵和待定参数,通过适当选取预处理矩阵和待定参数,新迭代法是收敛的,并且以定理的形式给出了新迭代方法的迭代矩阵的特征值和参数之间的基本等式,从而也导出了迭代法收敛的充分和必要条件.理论结果表明新方法更具有广泛性,并且适当的选择参数可以使新方法较SOR-Like方法具有更快的收敛速度.在文中的最后给出了迭代法的数值试验结果. 展开更多
关键词 鞍点问题 迭代法 对称正定矩阵 SOR-Like方法 GAOR方法
原文传递
一种求解鞍点问题的广义对称超松弛迭代法 被引量:11
3
作者 潘春平 王红玉 赵伟良 《数学杂志》 CSCD 北大核心 2011年第3期569-574,共6页
本文研究了鞍点问题的迭代算法.利用新的待定参数加速迭代格式并结合SSOR分裂的方法,获得了有两个参数的广义对称超松弛迭代法及其收敛性条件.数值例子表明选择适当的参数值可以提高算法的收敛效率,推广和改进了SOR-like迭代法.
关键词 鞍点问题 迭代法 SOR-like方法 GSOR方法
下载PDF
基于鞍点问题对偶组合的有限元法及其理论 被引量:9
4
作者 周天孝 《中国科学(E辑)》 CSCD 1997年第1期75-87,共13页
将要求Babuska-Brezzi条件(简称B-B条件)满足的鞍点型有限元格式,改变为不要求或基本上不要求B-B条件满足的混合/杂交元方法,称为稳定化的混合元格式.利用鞍点问题对偶特性,将同一问题的Primal和Dual两种鞍点问题表达加权组合,提出组合... 将要求Babuska-Brezzi条件(简称B-B条件)满足的鞍点型有限元格式,改变为不要求或基本上不要求B-B条件满足的混合/杂交元方法,称为稳定化的混合元格式.利用鞍点问题对偶特性,将同一问题的Primal和Dual两种鞍点问题表达加权组合,提出组合型稳定化的混合/杂交元方法.在抽象理论框架下,建立了普遍适用的关于解的存在唯一性和近似解收敛误差估计的定理.作为一个应用,Raviart-Thomas混合元的稳定化改造,导致H(div;Ω)元素可用C°元素替代. 展开更多
关键词 混合杂交元 对偶组合 鞍点问题 有限元
原文传递
关于鞍点问题的预处理HSS-SOR交替分裂迭代方法 被引量:9
5
作者 潘春平 《高校应用数学学报(A辑)》 CSCD 北大核心 2012年第4期456-464,共9页
为了高效地求解大型稀疏鞍点问题,在白中治,Golub和潘建瑜提出的预处理对称/反对称分裂(PHSS)迭代法的基础上,通过结合SOR-like迭代格式对原有迭代算法进行加速,提出了一种预处理HSS-SOR交替分裂迭代方法,并研究了该算法的收敛性.数值... 为了高效地求解大型稀疏鞍点问题,在白中治,Golub和潘建瑜提出的预处理对称/反对称分裂(PHSS)迭代法的基础上,通过结合SOR-like迭代格式对原有迭代算法进行加速,提出了一种预处理HSS-SOR交替分裂迭代方法,并研究了该算法的收敛性.数值例子表明:通过参数值的选择,新算法比SOR-like和PHSS算法都具有更快的收敛速度和更少的迭代次数,选择了合适的参数值后,可以提高算法的收敛效率. 展开更多
关键词 鞍点问题 交替迭代 PHSS方法 SOR—like方法
下载PDF
求解3×3块鞍点问题的广义SOR方法
6
作者 高翔 温瑞萍 王川龙 《工程数学学报》 CSCD 北大核心 2024年第5期808-824,共17页
3×3块鞍点问题作为一类特殊的线性方程组,其迭代方法的研究极具挑战性。基于经典的广义逐次超松弛(Generalized Successive Over Relaxation,GSOR)方法,针对3×3块大型稀疏鞍点问题,提出了三参数的中心预处理GSOR方法并讨论了... 3×3块鞍点问题作为一类特殊的线性方程组,其迭代方法的研究极具挑战性。基于经典的广义逐次超松弛(Generalized Successive Over Relaxation,GSOR)方法,针对3×3块大型稀疏鞍点问题,提出了三参数的中心预处理GSOR方法并讨论了其收敛性。同时,通过数值实验验证了新方法在计算花费方面优于中心预处理的Uzawa-Low方法。进一步地,还将新方法拓展到i×i块鞍点问题,提出了相应的GSOR类迭代框架,通过数值实验和数据分析,给出了选择较优i的初步建议。 展开更多
关键词 鞍点问题 3×3块鞍点问题 SOR方法 GSOR方法 中心预处理方法
下载PDF
一类求解鞍点问题的广义不精确Uzawa方法 被引量:7
7
作者 豆铨煜 殷俊锋 《计算数学》 CSCD 北大核心 2012年第1期37-48,共12页
本文提出了一类求解大型稀疏鞍点问题的新的广义不精确Uzawa算法.该方法不仅可以包含前人的方法,而且可以拓展出很多新方法.理论分析给出该方法收敛的条件,并详细的分析了其收敛性质和参数矩阵的选取方法.通过对有限元离散的Stokes问题... 本文提出了一类求解大型稀疏鞍点问题的新的广义不精确Uzawa算法.该方法不仅可以包含前人的方法,而且可以拓展出很多新方法.理论分析给出该方法收敛的条件,并详细的分析了其收敛性质和参数矩阵的选取方法.通过对有限元离散的Stokes问题的数值实验表明,新方法是行之有效的,其收敛速度明显优于原来的算法. 展开更多
关键词 鞍点问题 Uzawa方法 预处理 收敛性
原文传递
求解鞍点问题的多项式加速超松弛方法 被引量:6
8
作者 潘春平 王红玉 《工程数学学报》 CSCD 北大核心 2011年第3期307-314,共8页
为了快速有效地求解大型稀疏鞍点问题,在广义逐次超松弛(GSOR)迭代算法的基础上,结合Chebyshev多项式加速技术,本文构造了一种多项式加速超松弛迭代算法,并研究了该算法的收敛性.通过讨论加速后迭代矩阵的收敛性证明了新方法比加速前的... 为了快速有效地求解大型稀疏鞍点问题,在广义逐次超松弛(GSOR)迭代算法的基础上,结合Chebyshev多项式加速技术,本文构造了一种多项式加速超松弛迭代算法,并研究了该算法的收敛性.通过讨论加速后迭代矩阵的收敛性证明了新方法比加速前的迭代法具有快的收敛速度.数值例子也表明新方法提高了GSOR算法的收敛效率. 展开更多
关键词 鞍点问题 迭代法 GSOR方法 CHEBYSHEV多项式
下载PDF
分数阶原始对偶去噪模型及其数值算法 被引量:6
9
作者 田丹 薛定宇 杨雅婕 《中国图象图形学报》 CSCD 北大核心 2014年第6期852-858,共7页
目的结合分数阶微积分理论和对偶理论,提出了一种与分数阶ROF去噪模型等价的分数阶原始对偶模型。从理论上分析了该模型与具有鞍点结构的优化模型在结构上的相似性,从而可使用求解鞍点问题的数值算法求解该模型。方法使用求解鞍点问题... 目的结合分数阶微积分理论和对偶理论,提出了一种与分数阶ROF去噪模型等价的分数阶原始对偶模型。从理论上分析了该模型与具有鞍点结构的优化模型在结构上的相似性,从而可使用求解鞍点问题的数值算法求解该模型。方法使用求解鞍点问题的基于预解式的原始对偶算法对提出模型进行求解,并采用自适应变步长迭代优化策略提高寻优效率,弥补了传统数值算法对步长要求过高的缺陷。同时论证了确保算法收敛性的参数取值范围。结果实验结果表明,提出的分数阶原始对偶模型能够有效地抑制"阶梯效应",保护纹理和细节信息,同时采用的数值算法具有较快的收敛速度。结论提出了一种分数阶原始对偶去噪模型,该模型可采用一种基于预解式的原始对偶算法进行求解。实验结果表明,提出的模型能有效改善图像的视觉效果,采用的数值算法能有效快速收敛。 展开更多
关键词 图像去噪 变分法 分数阶梯度 鞍点问题 原始对偶 阶梯效应
原文传递
求解非光滑鞍点问题的黄金比率原始对偶算法
10
作者 聂佳琳 龙宪军 《数学物理学报(A辑)》 CSCD 北大核心 2024年第4期1080-1091,共12页
该文提出了一类新的黄金比率原始对偶算法求解非光滑鞍点问题,该算法是完全可分裂的.在一定的假设下,证明了由算法迭代产生的序列收敛到问题的解,同时证明了O(1/N)遍历收敛率.数值实验表明该文提出的算法比Zhu,Liu和Tran-Ding文中的算... 该文提出了一类新的黄金比率原始对偶算法求解非光滑鞍点问题,该算法是完全可分裂的.在一定的假设下,证明了由算法迭代产生的序列收敛到问题的解,同时证明了O(1/N)遍历收敛率.数值实验表明该文提出的算法比Zhu,Liu和Tran-Ding文中的算法有更少的迭代步数和计算机耗时. 展开更多
关键词 鞍点问题 黄金比率 原始对偶算法 收敛性 遍历收敛率
下载PDF
一类求解鞍点问题的修正SOR迭代方法
11
作者 任必聪 陈芳 《数学的实践与认识》 北大核心 2024年第4期110-118,共9页
针对鞍点问题,该文详细讨论和分析了修正SOR弛迭代方法的收敛性.理论分析表明,当选择合适的参数时,修正SOR迭代方法迭代方法是收敛的.进一步,我们得到了修正SOR迭代方法收敛时参数需要满足的条件.最后,数值算例表明了该方法的正确性以... 针对鞍点问题,该文详细讨论和分析了修正SOR弛迭代方法的收敛性.理论分析表明,当选择合适的参数时,修正SOR迭代方法迭代方法是收敛的.进一步,我们得到了修正SOR迭代方法收敛时参数需要满足的条件.最后,数值算例表明了该方法的正确性以及有效性. 展开更多
关键词 鞍点问题 SOR迭代方法 收敛性
原文传递
鞍点问题的广义位移分裂预条件子 被引量:5
12
作者 曹阳 陶怀仁 蒋美群 《计算数学》 CSCD 北大核心 2014年第1期16-26,共11页
对于大型稀疏非Hermitian正定线性方程组,Bai等人提出了一种位移分裂预条件子(J.Comput.Math.,24(2006)539-552).本文将这种思想用到鞍点问题上并提出了一种广义位移分裂(Generalized Shift Splitting,GSS)预条件子,同时证明了该预条件... 对于大型稀疏非Hermitian正定线性方程组,Bai等人提出了一种位移分裂预条件子(J.Comput.Math.,24(2006)539-552).本文将这种思想用到鞍点问题上并提出了一种广义位移分裂(Generalized Shift Splitting,GSS)预条件子,同时证明了该预条件子所对应分裂迭代法的无条件收敛性.最后用数值算例验证了新预条件子的有效性. 展开更多
关键词 鞍点问题 广义位移分裂迭代法 收敛性 预处理
原文传递
鞍点问题迭代解法收敛因子估计 被引量:5
13
作者 程晓良 彭武安 《高校应用数学学报(A辑)》 CSCD 北大核心 2000年第3期365-368,共4页
分析 Bank(1990年 )的论文中的求解鞍点问题的迭代解法 ,得到一个改进的收敛因子估计 .
关键词 鞍点问题 迭代解法 收敛因子估计 线性方程组
下载PDF
鞍点问题的预处理HSS-SOR二级分裂迭代方法 被引量:4
14
作者 潘春平 《高校应用数学学报(A辑)》 CSCD 北大核心 2013年第3期367-378,共12页
预处理对称/反对称分裂(PHSS)方法是求解大型稀疏鞍点问题的一类无条件收敛的迭代方法.通过结合块SOR迭代格式对PHSS方法运用二级分裂迭代思想,文中提出了一种预处理HSS-SOR二级分裂迭代方法,并研究了该方法的收敛性.最后通过数值实例... 预处理对称/反对称分裂(PHSS)方法是求解大型稀疏鞍点问题的一类无条件收敛的迭代方法.通过结合块SOR迭代格式对PHSS方法运用二级分裂迭代思想,文中提出了一种预处理HSS-SOR二级分裂迭代方法,并研究了该方法的收敛性.最后通过数值实例验证了此方法的有效性. 展开更多
关键词 鞍点问题 二级迭代方法 PHSS方法 SOR方法
下载PDF
一种求解鞍点问题的广义预条件对称-反对称分裂迭代法 被引量:4
15
作者 潘春平 王红玉 《数值计算与计算机应用》 CSCD 北大核心 2011年第3期174-182,共9页
鞍点问题的来源和应用都很广泛,如计算流体力学,约束最优化,约束加权最小二乘问题等。寻求快速有效地求解这类问题的算法具有很重要的现实意义.在白中治,Golub和潘建瑜提出的预条件对称/反对称分裂迭代法(PHSS)的基础上,通过引入新的待... 鞍点问题的来源和应用都很广泛,如计算流体力学,约束最优化,约束加权最小二乘问题等。寻求快速有效地求解这类问题的算法具有很重要的现实意义.在白中治,Golub和潘建瑜提出的预条件对称/反对称分裂迭代法(PHSS)的基础上,通过引入新的待定参数对原有迭代算法进行加速的思想,本文提出了一种解鞍点问题的具有两个待定参数的广义预条件对称/反对称分裂迭代法(GPHSS),并给出了该算法收敛性的条件.数值例子表明:通过最优参数值的选择,新算法比PHSS算法具有更快的收敛速度和更小的迭代次数,选择了最优参数值后,可以提高算法的收敛效率. 展开更多
关键词 鞍点问题 迭代法 HSS方法 PHSS方法
原文传递
一类Hermitian鞍点矩阵的特征值估计 被引量:3
16
作者 黄娜 马昌凤 谢亚君 《计算数学》 CSCD 北大核心 2015年第1期92-102,共11页
本文研究了一类大型稀疏Hermitian鞍点线性系统Az=(B E E* 0)(x y)=(f g)=b系数矩阵的特征值,其中B∈C^(p×p)是Hermitian正定阵矩阵,E∈C^(p×q)是列降秩.本文分别给出了该系数矩阵正特征值与负特征值界的一个估计式,同时通过... 本文研究了一类大型稀疏Hermitian鞍点线性系统Az=(B E E* 0)(x y)=(f g)=b系数矩阵的特征值,其中B∈C^(p×p)是Hermitian正定阵矩阵,E∈C^(p×q)是列降秩.本文分别给出了该系数矩阵正特征值与负特征值界的一个估计式,同时通过数值算例验证本文所给出的特征值界的估计是合理且有效的. 展开更多
关键词 鞍点问题 Hermman矩阵 奇异 特征值估计
原文传递
求解特定鞍点问题的改进SOR-Like方法 被引量:3
17
作者 邵新慧 李晨 王心怡 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2017年第3期452-456,共5页
鞍点问题广泛出现在众多的工程研究领域,如流体力学、电磁学、最优化问题、最小二乘问题、椭圆偏微分方程问题等.以SOR类方法为基础,结合HS分裂思想,将经典鞍点问题的求解方法推广到特殊鞍点问题的求解上.给出一种具有新型分裂迭代格式... 鞍点问题广泛出现在众多的工程研究领域,如流体力学、电磁学、最优化问题、最小二乘问题、椭圆偏微分方程问题等.以SOR类方法为基础,结合HS分裂思想,将经典鞍点问题的求解方法推广到特殊鞍点问题的求解上.给出一种具有新型分裂迭代格式的MSOR-Like方法,用以求解一类含有非对称块的鞍点系统,给出了相应的收敛性分析以及最优松弛参数选取方法.数值算例验证了对于不同的预优矩阵,MSORLike方法只有收敛速度的分别,没有收敛性能的影响,且在相同计算精度下,该方法解决特殊鞍点问题的迭代效果优于常规方法解决经典鞍点问题. 展开更多
关键词 鞍点问题 迭代法 HS分裂 SOR方法 收敛
下载PDF
求解大型稀疏鞍点问题的对称超松弛方法
18
作者 潘春平 《电脑知识与技术》 2010年第7X期5979-5982,共4页
为了快速有效地求解大型稀疏鞍点问题,在SOR-like迭代算法的基础上,结合SSOR分裂,构造了一种解鞍点问题的SSOR-like迭代算法,并研究了该算法的收敛性。数值例子证明:通过参数值的选择,SSOR-like算法比SOR-like算法具有更快的收敛速度和... 为了快速有效地求解大型稀疏鞍点问题,在SOR-like迭代算法的基础上,结合SSOR分裂,构造了一种解鞍点问题的SSOR-like迭代算法,并研究了该算法的收敛性。数值例子证明:通过参数值的选择,SSOR-like算法比SOR-like算法具有更快的收敛速度和更小的迭代次数,选择了合适的参数值后,可以大大提高算法的收敛效率。 展开更多
关键词 鞍点问题 迭代法 SOR-like方法 SSOR-like方法
下载PDF
求解鞍点问题的修正MSOR-like方法 被引量:1
19
作者 赵耿威 黄敬频 《重庆理工大学学报(自然科学)》 CAS 北大核心 2022年第11期249-256,共8页
针对一类非对称鞍点问题,分析了MSOR-like迭代存在的缺陷,构建了一种修正的迭代方法。其主要思想是引入新参数来提高迭代关联系数矩阵的灵敏度,合理给出参变量正定矩阵的选取方法。根据所建迭代格式的特点,运用矩阵特征值理论,证明了所... 针对一类非对称鞍点问题,分析了MSOR-like迭代存在的缺陷,构建了一种修正的迭代方法。其主要思想是引入新参数来提高迭代关联系数矩阵的灵敏度,合理给出参变量正定矩阵的选取方法。根据所建迭代格式的特点,运用矩阵特征值理论,证明了所给迭代的收敛性,并得到相关参数的取值范围。最后通过数值实验,证实了修正MSOR-like方法用于求解鞍点问题的有效性。 展开更多
关键词 鞍点问题 修正MSOR-like迭代 收敛性 参数选取
下载PDF
求解鞍点问题的广义正定和反Hermitian分裂方法 被引量:2
20
作者 董贝贝 鲍亮 《计算机工程与科学》 CSCD 北大核心 2019年第9期1567-1573,共7页
探讨了如何求解大型稀疏鞍点问题,给出了一种基于正定分裂的广义正定和反Hermitian分裂(GPSS)方法。该方法首先利用矩阵的正定分裂,构造出鞍点矩阵的2种分裂格式;然后利用这2种分裂格式构造出GPSS迭代;接着给出了迭代收敛的充要条件。... 探讨了如何求解大型稀疏鞍点问题,给出了一种基于正定分裂的广义正定和反Hermitian分裂(GPSS)方法。该方法首先利用矩阵的正定分裂,构造出鞍点矩阵的2种分裂格式;然后利用这2种分裂格式构造出GPSS迭代;接着给出了迭代收敛的充要条件。最后进行了数值对比实验,实验结果表明,GPSS比正定和反Hermitian分裂(PSS)和Hermitian和反Hermitian分裂(HSS)方法更有效。 展开更多
关键词 鞍点问题 GPSS 收敛性 正定分裂
下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部