Since the wear problems play a crucial role in the relatively moving systems, in this paper, the effect of counter-face roughness on the wear of extruded PTFE (polytetrafluoroethylene) which is a very common materia...Since the wear problems play a crucial role in the relatively moving systems, in this paper, the effect of counter-face roughness on the wear of extruded PTFE (polytetrafluoroethylene) which is a very common material for sliding bearing applications has been investigated to contribute related literature. PTFE is well-known for its exceptional tribological properties, and good toughness, and high thermal stability. It can also be used in dry sliding applications. PTFE is commonly used to reduce friction between relatively moving surfaces, lts wear rate can be reduced by adding micro or nano-sized fillers such as Al2O3, TiO2, SiO2, MoS2, Al, Pb, ZnO, Cu, ZrO2, Ni, CNF (carbon nano fiber), carbon fiber, glass fiber, bronze, and graphite powder into the PTFE. In this study, an experimental research was carried out for filled and unfilled PTFE to compare their behaviors under different speeds and loads. Test materials were unfilled PTFE, PTFE + wt. 5% Al2O3, PTFE + wt. 15% Al2O3. Formation of transfer film was examined in dry sliding condition against stainless steel counter faces. All tribological tests were carried out in a commercially available tribo-tester sliding against AISI-416 C stainless steel. As a result of a series of systematic experiments, remarkable results have been obtained to make a distinctive comparison between unfilled and filled PTFE. The variation of friction coefficient with sliding distance during the tests has also been recorded. At the end of the tests, wear rate of related PTFE specimen was calculated based on measured data. Wear rate is found very high for unfilled PTFE, however, the lowest wear rate is recorded for PTFE + wt. 15% Al2O3 as expected. The coefficient of friction remained approximately stable during the wear tests. Transfer films were inspected by observing the discs' surface with optical microscope.展开更多
文摘Since the wear problems play a crucial role in the relatively moving systems, in this paper, the effect of counter-face roughness on the wear of extruded PTFE (polytetrafluoroethylene) which is a very common material for sliding bearing applications has been investigated to contribute related literature. PTFE is well-known for its exceptional tribological properties, and good toughness, and high thermal stability. It can also be used in dry sliding applications. PTFE is commonly used to reduce friction between relatively moving surfaces, lts wear rate can be reduced by adding micro or nano-sized fillers such as Al2O3, TiO2, SiO2, MoS2, Al, Pb, ZnO, Cu, ZrO2, Ni, CNF (carbon nano fiber), carbon fiber, glass fiber, bronze, and graphite powder into the PTFE. In this study, an experimental research was carried out for filled and unfilled PTFE to compare their behaviors under different speeds and loads. Test materials were unfilled PTFE, PTFE + wt. 5% Al2O3, PTFE + wt. 15% Al2O3. Formation of transfer film was examined in dry sliding condition against stainless steel counter faces. All tribological tests were carried out in a commercially available tribo-tester sliding against AISI-416 C stainless steel. As a result of a series of systematic experiments, remarkable results have been obtained to make a distinctive comparison between unfilled and filled PTFE. The variation of friction coefficient with sliding distance during the tests has also been recorded. At the end of the tests, wear rate of related PTFE specimen was calculated based on measured data. Wear rate is found very high for unfilled PTFE, however, the lowest wear rate is recorded for PTFE + wt. 15% Al2O3 as expected. The coefficient of friction remained approximately stable during the wear tests. Transfer films were inspected by observing the discs' surface with optical microscope.